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Summary

Sheet metal forming processes are used to create prodattsae a high stiffness com-
bined with a small weight. To determine the settings of sughaaluction process, fun-
damental knowledge of the mechanical behaviour of the naetdlof the process itself is
required. With the introduction of the finite element softeva new opportunity for cost
reduction was presented. The finite element method allowsgdtmisation of forming
process with a computer, instead of with a costly trial andregrocess in the workshop.
Amongst the various models that are used in this tool, a ma&tendel is used to describe
the mechanical behaviour of the sheet. The accuracy of #diqtion of the finite element
software is determined by the accuracy of its componenthisrihesis, the influence of the
strain path on the mechanical behaviour is investigategeBments are used to improve
the material models and to improve the overall predictidrite®finite element method.

The mechanical behaviour was tested with theENTE BIAXIAL TESTER, a unique
test equipment that loads a sheet metal specimen in twotidinec Two different chal-
lenges occurred with this test equipment: the strain measant and the stiffness of the
test equipment itself. For an accurate determination oftrans in the sample, the mea-
sured clamp displacement is not sufficiently accurate. Hiieal strain measurement was
optimised for an accurate strain measurement. The strdin gheanges, applied to in-
vestigate the mechanical behaviour of the sample, alsarmefib the frame-work of the
TWENTE BIAXIAL TESTER. In turn, this affected the test procedure such, that sorperex
iment were not feasible. An algorithm was implemented toti@dithe deformation in the
test rig during experiments.

In this research, four materials were investigated. They arild steel (DC06), high
strength steel (H340LAD), aluminium (AA5182) and a dual ghateel (DP600). The
different experiments showed that the conventional DCQ@idst sensitive to strain path
changes. It showed that upon a load reversal, the flow stesgakes significantly. A
loading direction perpendicular to the initial directiortroduces a higher flow stress. Ad-
ditionally, continuously changing strain path changesaregaplied to mimic a true forming
process. The mechanical behaviour observed in the expetsroan be explained with the
evolution of the dislocation structure. In the literatumgchanisms were observed on the
micro-scale that are easily correlated with the mechabiehhviour on the macro-level. A
causal effect though, seems hard to prove.

To simplify the implementation of material models, a geoenaterial model was in-
troduced. The scheme used in this model allows for simpldemgntation of alterna-
tive models. Isotropic and kinematic hardening models vimtlly implemented in this
scheme. Furthermore, two strain path dependent modelsimptemented: the Teodosiu
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& Hu model and the Levkovitch model. The latter describesntteehanical behaviour in
a phenomenological way. The Teodosiu & Hu model describestolution of the dis-
location structure from which the mechanical behaviouraduted. Both models show
accurate stress—strain curves, but require more compntatie. Additionally, the strain
path dependent models can deteriorate the global convezgsra finite element simula-
tion, hereby increasing the calculation time even more. mbdels were validated by the
simulation of a semi-academical deep drawing product.

Using the full strain path dependent material models reguin extensive set of me-
chanical experiments and experience with fitting procesitoeletermine the material con-
stants. Hence, using a strain path dependent material risoaielly desired when the strain
path changes experienced in the forming process inducesamieal behaviour that can-
not be described with a classical model. To this end, a spaih change indicator was
developed that quantifies strain path changes and allowasstsssment.



Samenvatting

Plaatomvormingsprocessen worden gebruikt om producteraken die een hoge stijfheid
combineren met een laag gewicht. Om de instellingen van eggetiike proces te bepalen
is fundamentele kennis nodig van het mechanisch gedragoweel het plaatmateriaal als
het proces zelf. Met de introductie van de eindige elemestéware werd er een nieuwe
mogelijkheid tot kostenbesparing gepresenteerd. Degérelementen methode maakt het
mogelijk het proces te optimaliseren met de computer intplean in de fabriek waar het
proces handmatig geoptimaliseerd wordt. Onder de groscherdenheid aan modellen
die toegepast worden in dit hulpmiddel, wordt het matenealel gebruikt om het mecha-
nisch gedrag van de plaat te beschrijven. De nauwkeuriglagicen voorspelling van de
eindige elementen software wordt bepaald door de nauwgeeid van zijn componenten.
In dit proefschrift wordt de invloed van het rekpad op het hasch gedrag bestudeerd.
Experimenten zijn uitgevoerd om materiaalmodellen te etten, en om de gehele voor-
spelling van de eindige elementen methode te verbeteren.

Het mechanisch gedrag is getest metreMENTSE BIAXIALE BANK, een unieke test-
bank die een metalen testplaatje kan belasten in tweerrggdtii Twee problemen kwamen
aan het licht met deze testopstelling: de rekmeting en fleeiti van de testopstelling zelf.
Voor een nauwkeurige bepaling van de rek in het testplaatie gemeten klemverplaatsing
niet goed genoeg. Hiertoe is de optische rekmeting geofitieesd voor een nauwkeurige
rekmeting. De rekpadveranderingen, die zijn toegepastetmiechanisch gedrag van het
testplaatje te testen, vervormde ook het frame van de t&stbpg. Als gevolg daarvan
werd de test zodanig beinvlioed, dat sommige testen nietliffobleken. Een algoritme is
geimplementeerd dat de vervorming van de testopstelbngpenseert tijdens experimen-
ten.

In dit onderzoek zijn er vier materialen onderzocht, te wetervormingsstaal (DCO06),
hoge sterkte staal (H340LAD), aluminium (AA182) en twesefa staal (DP600). De ver-
schillende experimenten toonden aan dat het conventi@@@6 het meest gevoelig is
voor rekpadveranderingen. Na een lastwisseling daaldéo@éspanning significant. Een
verandering van het rekpad haaks op de initiéle richtirsglteerde juist in een hogere
vloeispanning. Rekpadveranderingen waarin het rekpasldggijk werd veranderd zijn
uitgevoerd om het gedrag in een werkelijk omvormprocesrteikbren. Het mechanisch
gedrag wat gemeten is in de experimenten kan uitgelegd wardd de ontwikkelingen
op dislokatie-niveau. Mechanismen die optreden op hetaniceau zijn beschreven in
de literatuur, en worden gecorreleerd met het mechanisttage®p de macroschaal. Een
oorzakelijk effect is evenwel moeilijk te bewijzen.

Om de implementatie van de materiaal modellen te vereelgengds er eerst een ge-



Xii Samenvatting

neriek materiaalmodel geintroduceerd. Het gebruiktesehmaakt het mogelijk om een-
voudig alternatieve modellen te implementeren. Isotrap&ieematische verstevigings-
modellen zijn in eerste instantie geimplementeerd in cliesna. Daarnaast zijn er twee
rekpadafhankelijke modellen geimplementeerd: het Tsiod® Hu model en het Levko-

vitch model. De laatst genoemde beschrijft het mechanigedeag op een fenomenologi-
sche manier. Het Teodosiu & Hu model beschrijft de evolugie gte dislokatie-structuur,

waaruit vervolgens het mechanisch gedrag afgeleid wordtdeBmodellen geven nauw-
keurige spanning—rek-krommes, maar vragen ook meer ligkeBovendien kunnen de

rekpadafhankelijke modellen de globale convergentie waneindige elementen simula-
ties verstoren, waardoor de rekentijd nog verder toeneBmtmodellen zijn gevalideerd

met simulaties van een semi-academisch dieptrekprodukt.

Het gebruik van volledig rekpadafhankelijke materiaaleitah vraagt om een uitge-
breide set van mechanische experimenten, en om ervarinfitspetcedures om de mate-
riaalconstanten te bepalen. Het gebruik van een rekpadkdhg materiaalmodel is dus
alleen gewenst als er rekpadveranderingen optreden imiairoproces die mechanisch
gedrag veroorzaken wat niet beschreven kan worden met esemtioneel materiaalmo-
del. Daarom is er een rekpadveranderings-indicator okeilikdie de rekpadverandering
kwantificeert en daarmee beoordeling mogelijk maakt.



Preface

The results of four years of research is presented in thisighét fits into a larger scope
on materials research performed in the group of applied amdch. Already in 1996 it
was recognised that strain path changes in material modais mot taken into account.
The basic concepts of thewIENTE BIAXIAL TESTER were developed by Han Huétink,
after which Joop Brinkman started with the actual desigrihénfollowing years, the tester
was made and the first experiments were performed. Hermknarijpased his doctoral
thesis on much of the experiments he performed with tweNTE BIAXIAL TESTER, and
at the same time he did a lot of development on the hard- antd/aa. After that, a
proposal for another PhD-assignment was prepared togeithe€orus, to further explore
strain path sensitivity in sheet metal with thevENTE BIAXIAL TESTER and improve
the material models with the experimental results. The &kihds Institute for Metals
Research (the current M2i) accepted the proposal and thjecgpmwas carried out under
project number MC1.03158 in the framework of the Strategéisdarch Program of the
Materials Innovation Institute (M2i) in the Netherlandsigw.M2i.nl).
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1. Introduction

1.1 Numerical predictions of deep drawing processes

Structures made of sheet metal can combine a high stiffmeka bbw mass. These proper-
ties are exploited in car panels, stiffeners, beer and bgesrans and many other applica-
tions. The production of these products from a sheet, byrdeftion only, is a challenging
task. To this end, the process of deep drawing was developée iast century. The prin-
ciple is clarified in Figure 1.1. An initially flat piece of seiemetal (théblanK) is clamped
between thalie and theblankholder As the punch moves downwards, the geometry of the
die and punch is transferred to the blank. The blankholdetrots the amount of mate-
rial flowing into the die cavity and hence the amount of stiaithe blank. This process
proved to be robust, and once in operation, a constant gyudlithe products is obtained.
In general, a high production capacity can also be achieved.

punch blankholder

die l blank

Figure 1.1: The deep drawing of a cup.

Although deep drawing is an efficient production processedires experience and
knowledge to determine the optimal settings for the pracéskling, springback, neck-
ing and complete failure can invalidate the final productoatty trial and error procedure,
in which the process settings are varied, is required todah@ise undesired effects. A sig-
nificant cost reduction can be made by transferring the anal error procedure from the
workshop to the computer. Simulations of the deep drawinggss are hence performed,
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to predictthe process characteristics. Tool settings, blank dinoessand other process
parameters can be determined without the need to manuéaestrtools.

TheFinite Elementmethod is used to simulate the deep drawing process anstigate
its characteristics. These simulations allow the engineenvestigate the influence of
various parameters on the deep drawing process, and alas sloav the material deforms
as the product is formed. The state variables in the sinwuiaihow the evolution of stress
and strain, and indicate the features in the actual protessieed adjustment. In a FE-
code, the actual mechanical behaviour of the blank is desdrvithin the material model.
Obviously, a material model that describes the mechaniga&iour accurately will lead
to better overall predictions of the FE-simulation.

Conventional elastic—plastic material models compriseriasate models; thegeld cri-
terion and thehardening modelThe yield criterion describes the stress at which the ma-
terial behaviour changes from elastic to plastic behavidirey are developed such that
they describe the elastic—plastic transition dependernhenoading direction. The hard-
ening models describe the material behaviour when thessétate is in the plastic regime.
Here, the deformation is irreversible and in general thesstrstrain curve is non-linear.
In the elastic regime, it is assumed for metals that the ststgain relation is linear and
reversible. The parameters for the classical yield cdatand hardening models are nor-
mally determined using relatively simple tensile testswideer, simple experiments with
changing strain paths have shown that the actual behavéouot be described sufficiently
accurately with these models. The observed strain pathtiséigsof sheet metal is the
subject of this thesis.

1.2 Strain path sensitivity in metals

In the literature, strain path sensitivity of metals waseistigated with 2 characteristic
strain path changes: load reversals and orthogonal stetginghanges. The influence of a
load reversal on the mechanical behaviour of metals haswekmvestigated (Chaboche,
1991; Christodoulowt al., 1986; Churet al,, 2002; Hasegawa and Yakou, 1975). Most
materials show the Bauschinger effect in this strain patingp,i.e. the stress level in the
new stress direction is lower than in the pre-strain phaserthogonal strain path changes,
2 monotonic loading paths with perpendicular loading dioes are successively applied,
(Thuillier and Rauch, 1994; Nesteroed al, 2001). A characteristic sudden increase in
stress in the new loading direction was observed in thesererpnts. It is believed that the
non-proportional stress levels after strain path chaniges §om the developments on the
micro level. The organisation of atoms in the crystal lattiepend on the deformation and
the direction of the applied deformation. Different classésubstructures are recognised,
depending on the deformation direction. Research in thid fieongoing to deduce the
mechanisms that cause the strain path dependent behawithe macro scale.

The experiments with an orthogonal strain path change tegtr@sented in the litera-
ture show an intermediate elastic unloading prior to logdinthe new direction. This is
due to the experimental setup used. The obtained stredsriglie new direction is higher
than for proportional loading. A true deep drawing prochssyever, will not show a strain
path change with unloading. For this reason it is importanhvestigate the mechanical
behaviour for a continuous strain path. Note that this a®rsition led to a discussion in
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which it was speculated that a similar strain path withotgrimediate unloading would
induce the same stress peak, (De Montleau, 2004; Vgard, 2008). The experiments
performed in the current thesis add to the conclusion ofdtsaiussion.

1.3 Objective of this thesis

An accurate prediction of the stress—strain behaviour megsthe accuracy of the com-
plete simulation of a deep drawing process. The goal of tésis was to introduce ma-
terial models that are able to describe the complex mechlab@haviour of sheet metal
during strain path changes. Experiments were performeedternhine the actual material
behaviour, in both continuous and discontinuous straihgpathe material model was to
be used in full deep drawing simulations, and hence was redjad be sufficiently time
efficient.

1.4 Outline

Chapter 2 of this thesis starts with an overview of the basicepts that are used in ma-
terial modelling. The commonly used monotonic and non-prtipnal experiments to

investigate the mechanical behaviour are discussed hasesHown that experiments with
a changing, but continuous strain path, are a rarity in tleisl fi Furthermore, different

existing theories that describe the influence of the digionastructure on the macro me-
chanical behaviour are presented. Concepts of these stuillibe used on the macro scale
to model the mechanical behaviour. However, it also indigdlhat continuous strain path
changes have not yet been explored.

Chapter 3 concerns an investigation of mechanical behalipa biaxial testing de-
vice. The TWENTE BIAXIAL TESTER was used to deform a sample in simple shear and
plane strain tension. To assess the homogeneity of therdafun area, the sample was
investigated with an optical deformation measuremenesystNext, the measured defor-
mations were used to define the conditions for a FE-simulatfothe experiment. The
stress-state across the sample was investigated and teerésultant was compared with
the experimentally observed values.

In Chapter 4 the results of the experiments performed on#eNTE BIAXIAL TESTER
are presented. The mechanical behaviour under reversedthodonal strain path changes
is examined. The results are used for the characterisatitve anaterials and for the vali-
dation of the material models. The materials investigatetis thesis are DC06, AA5182,
DP600 and H340. The results demonstrate the need for st#irspnsitive models.

Several material models are discussed in Chapter 5. Fiestlystematic procedure for
the evaluation of the stress—strain relation is proposeditnally, a method is introduced
that allows more elaborate use of yield criteria that areci§ipally developed for sheet
metal forming processes. Full strain path dependent mbgdleodosiu and Hu (1995) and
Levkovitch and Svendsen (2007) are used to describe thean@ethbehaviour observed in
the experiments. DCO6 is the most challenging materialiimseof strain path sensitivity,
hence this material is used as a test case. This chapter @isairts the description of
an indicator that describes how “severe” a strain path chang It can be used as a
post processing tool to determine the accuracy of the siioalaand indicates whether
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the simulated process requires a full strain path dependatgrial model for satisfactory
results.

In Chapter 6 the performance of the material models is stubdiemeans of 2 sets
of experiments. Tests on theWENTE BIAXIAL TESTER with combined tension—cyclic
shear deformation show the performance of the material lmadeen describing a non-
proportional strain path. Secondly, an academic deep dgapioduct represents an in-
dustrial application for the material models. The straithpghange indicator is used to
demonstrate the strain path changes that are experiencttk bpaterial. The material
models are assessed for their performance in this setting.

Finally, Chapter 7 summarises the conclusions of this workthe recommendations
for future research.



2. Plasticity in sheet metal

In this thesis the mechanical behaviour of sheet metal stdgjeto strain path changes
is investigated. The current material models cannot desdhie mechanical behaviour
that occurs when a material experiences a strain path chdrgeaim of this work is to
find material models that can accurately describe the sffgzserved in experiments with
strain path changes, and that are sufficiently efficient tagpdicable in simulations of true
forming simulations. Within the very broad science of metakticity this research is only
one of the topics. In this chapter the background of the nachbbehaviour and the basic
concepts which describe it are presented. Also, differrsses of material models are
discussed.

The models in macro scale plasticity, Section 2.1, des@ilmee phenomena that are
observed with the WENTE BIAXIAL TESTER in Chapter 3 and these are used in Chapter 4
to show that these classical material models cannot desalithe phenomena observed
in experiments with strain path changes. In Section 2.2dalon migration and pattern-
ing is discussed, which explains in a qualitative way whatd®ems during the strain path
changes that are discussed in the literature. Althoughdsdmt supply models that can
easily be used in engineering applications, it providesradetstanding of the underlying
mechanisms in experiments with strain path changes.

2.1 Sheet metal characterisation

In this section we discuss the basic concepts that are usth@ imodelling of plasticity.
First the material models that are currently used are intred. For a more comprehensive
overview, the books by Simo and Hughes (2000); Belytsctikal. (2006); Zienkiewicz
and Taylor (2005) are useful. After that, different expeitts are discussed to validate and
optimise these models. Finally, the current status fronlitheture to define and measure
strain path dependency is demonstrated.

2.1.1 Elastic—plastic material models

To describe the elastic—plastic mechanical behaviour déinelassical material models
describe the stress—strain behaviour making use of a yielctibne:

@ = 0Oeq(0) — 07(eq) (2.1)

This material model consists of 2 models; the yield surfamkthe hardening modedeq
andos, respectively. The flow stress describes the measured stress in terms of equivalent
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Figure 2.1: The yield criteria by Von Mises in plane stresacgpwithout shear.

plastic strainceq. The equivalent stress,q determines the shape of the yield surface in
stress space and is a function of the full 3-dimensionasststater. Via the equivalent
stress it is possible to compare a one-dimensional flow cwitrea 3-dimensional stress
state. The yield surface only defines the relation betweertiffierent stress states upon
yielding, not the absolute size of the surface. The size @fikld surface is determined
by the hardening model that defines the magnitude of the flegst Figure 2.1 illustrates
the concept of a yield criterion. The ellipse representsythlel surface according to Von
Mises and shows the stress states in plane stress at whidimgieccurs. For the situation
whereg = 0 in Equation (2.1), the flow stress and the equivalent stresgq are equal.
The stress state is on the yield surface and plastic deformation may occup. ¥ 0, the
equivalent stress is smaller than the current flow stresstemchaterial behaves elastically.
Situations where > 0 are not possible in these models. The definition of the yietthse
defines the ratio between the stress states at which yiebditigy's, but does not state which
stress state corresponds with the flow stress. In this wieekyield function is defined such
that a uniaxial stress state is equal to the equivalentsswgs= oeq(0x) = 0t.

The equivalent plastic strain is defined according to thielyienction. It is assumed that
the equivalent plastic strain rai&§) and the equivalent stress are energetically conjugated.
This is elaborated in terms of the rate of plastic wark

Li)p = Oeqéeq =0 . Ep (22)
in which &P represents the plastic strain rate. From this equationetjugvalent plastic

strain rate is calculated:
o:é&P

(2.3)

foq =
eq Oeq
To describe the relation between the strain and the strags, she model discrimi-
nates between elastic and plastic deformation. For théietisformation the generalised
Hooke’s law is used:
6 =E:é&° (2.4)
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wheree€ is the elastic strain tensor aitlis a fourth order tensor with elastic properties.
Plastic material behaviour is described by means of Driskestulate, which states that
the rate of plastic strain is perpendicular to the yield acef

. 00e
P — j o
€ do

(2.5)
wherel is the plastic multiplier.

The model in Equation (2.1) includes the isotropic hardgmihthe materialj.e. the
shape of the yield surface is determined by the definitiorhefaquivalent stress and the
size of the yield surface is determined by the flow stresss iB8hown in Figure 2.2 where
the initial yield surface (a) evolves to yield surface (b).describe the Bauschinger effect
in a cyclic test, kinematic hardening is commonly used. Tislel describes hardening by
the movement of the yield surface within stress space. Hmeslation of the yield surface
is indicated with the back stress tenaorThe definition of the yield criterion now reads:

@ = Oeq(0 — &) — 0t (eq) (2.6)

where the term{oc — ) is equivalent to the effective streés The back stress evolves in
the direction of the plastic strain rate (Prager) or in theection of the stress (Ziegler).
This model is indicated by yield surface (c). Distortionaktening (yield surface (d))
describes the change of the shape of the yield surface astdiuof the plastic strain and
the direction of plastic flow or the direction of the stres®ra

gy

d
/ ©
7 ax

(b)

Figure 2.2: The different hardening models demonstratepliog shear deformation.

2.1.2 Experiments

The traditional test to determine the material behaviowghafet metals is the uniaxial ten-
sile test. Figure 2.3 shows the sample and how it is orientéd nespect to the original
sheet. The sample coordinates are indicated with andz. The Rolling Direction (RD),
the Transverse Direction (TD) and the Normal Direction (ND¢ used to indicate the
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Figure 2.3: A sample used in uniaxial tests for sheet mdteria

directions used in the fabrication of the sheet. The angth@fample orientation with re-
spect to the rolling direction is indicated by the an@ldue to the rolling process a texture
develops in the material. This texture is symmetric in tl@sverse, normal and rolling
directions. The mechanical behaviour of most sheet metadependent on the loading
direction with respect to the texture orientation. Thisapttred in the so callefy-value:

Ry =2 2.7)
Ez
wheree, ande, denote the transverse and thickness strain respectiveRy & 1 for all
values off, the material behaves isotropically, butkif> 1 or R < 1 the material behaves
anisotropically. IfR is dependent on the anghe the material is planar anisotropic. For a
material withR > 1, the material has a relatively high resistance to thinning.

Traditionally, the uniaxial tensile test is used to benchaotlae hardening behaviour of
a material. This experiment alone suffices to fit an elastistig material model with the
Von Mises yield surface. To describe the yielding behavimare accurately, new yield
surfaces were introduced. The Hill'48 yield surface regsitheR-values in 3 different
directions:0°, 45° and90°. With time, more experiments were introduced to descrilee th
mechanical behaviour more accurately. Figure 2.4 shovierdift experiments on sheet
metal to investigate the mechanical behaviour under diffestress states. These experi-
ments are discussed briefly as follows.

The pure shearpoint is defined as the stress state where the tensile ansvéiame
stresses are equal in magnitude, but opposite in sign. Dilre ttomplexity of such a test,
the loading conditions are changed such that the same stedssxists, but the feasibility
of the test increases; this is indicated in Figure 2.5. Hffety, the sample is rotated by
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Figure 2.4: Different experiments to measure the stressndiehaviour for various stress states.

45° and in stead of compressive and tensile stressemle sheadeformation is applied.
The plane strain tensile test is defined as a tensile tesputithansverse contraction. The
stress state in this test is obtained by preparing a sampleanNarge width compared to
its height. At the edges uniaxial tensile deformation wdtor, but if the width to height
ratio is large enough, the largest part of the sample willrbglane strain tension (An
et al,, 2004). Finally, the equi-biaxial test stretches a squpeeisnen in 2 perpendicular
directions. This experiment is mostly performed with a diaren specimen (Kuwabara
etal, 2002).

-~ [=| — principle stresses

W \
&
shear stresses

& shear deformation

Figure 2.5: Pure shear converted to simple shear for isottghaviour.
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Figure 2.6: The deformation of a body.

Measuring deformation and stresses

In the uniaxial tensile test the strains and stresses aeerdigted easily, but this aspect of
material characterisation is more complex than in otheesxrgents. To this end, some
definitions of continuum mechanics are used to allow for teteigmination of strains and
stresses.

To characterise the deformation of a body, we refer to Fi@uee The domain of the
body in the initial state is indicated I§g,. Within that domain any arbitrary infinitesimal
vector dx can be defined. Upon loading of the body, it is deformed toutsent domain
Q. The functiongp maps the initial configuration to the current configuration:

x = ¢(X,1) (2.8)

Thedeformation gradienis the derivative of the mapping with respect to the curreat m
terial points:

_0p(X,1)
F=—" (2.9)

An infinitesimal vectordX in the initial domain is mapped to the current domaindta
The relation between the 2 segments is captured in the dafamngradient:

dx = FdX (2.10)
Next, thevelocity gradient indicates the relative velocity and rotation and is definged a
L=F.-F! (2.11)

The velocity gradient can be decomposed into a symmetricipand a skew-symmetric
partW:
L=D+W (2.12)

In elastic—plastic analysis of metals, the rate of defoimmas commonly decomposed into
an elastic and plastic part:
D =D°+DP (2.13)
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Figure 2.7: Different 2 stage strain path changes.

From the rate of deformation the logarithmic strain incretm@n be determined:
DAt ~ ¢ (2.14)

This holds for small time steps and for proportional loadirgrthermore, in metals plas-
ticity it is assumed that a plastic volume change is not bssHence,

tr(DP) = 0 (2.15)

Engineering stress is defined as the ratio of the tensilefmrer the initial cross section.
It is common practice in metals plasticity to usee stressesr Cauchy stresses.e. the
force divided by the current cross section.

2.1.3 Strain path changes

The experiments on strain path changes that have been edmotfar in the literature
mostly apply two-stage strain path changes (Fernartle, 1993; Rauch and Schmitt,
1989; Gardet al,, 2005; Tarigopulat al., 2008). This is done by applying a deformation
to a large sample, after which a smaller sample is removeah ahgled, see Figure 2.7.
This smaller sample is now also tested. An indication fordtnain path change between
the first and the second loading stage is given by Schanit. (1985) as follows:

€1°€)
lev ez

The range of the indicator is-1, 1], with 8 = —1 indicating reverse loading] = 1
monotonic loading and = 0 orthogonal loading. It is observed thétand 6 are not
necessarily equal. For exampleyif= 90°, the strain path change= 138°.

The material models and experiments so far do not fully desatrain path dependent
material behaviour. Isotropic hardening describes thehagical behaviour as a function
of accumulated strain and not as a function of the directigulastic flow. If a material is
modelled with kinematic hardening, the Bauschinger effeicluded, but the mechani-
cal behaviour during orthogonal strain path changes camndescribed by these models.
Gradual strain path changes as observed in a real deep drpracess are not applied and
thus need to be explored for further improvement of mateniadlels and understanding.

cosf = (2.16)

2.2 Dislocation structure evolution

In this section the micro-mechanical behaviour and its erfize on the flow stress is dis-
cussed. Firstly, the evolution of the dislocation struetunder monotonic loading is intro-
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Figure 2.8: Cell block structure of a copper specimen hauvimdergone 7.5 % rolling reduction.
The rolling direction corresponds to the horizontal direetMcCabeet al., 2004).

duced. After this a section is devoted to the mechanismsthate the Bauschinger effect,
which is followed by a section on the formation of microbattt typically evolve under
orthogonal strain path changes. The phenomena obserad Evel are the causes of the
strain path sensitive behaviour.

The evolution of the dislocation structure in metals hasmbwach investigated, which
is reflected in the number of papers in this field. The mateiiatestigated in the field
of strain path dependency are steels, copper and aluminB@cause copper and mild
steel show similar behaviour under strain path changesaefes to these studies are also
included. Finally, it is observed that the designation cépdmena can vary from author to
author.

2.2.1 Monotonic loading

In an undeformed metal the dislocations are randomly Oisteid. During elastic defor-
mation, the crystal lattice is stretched as a whole, and tbleahtions move in random
directions. Plastic deformation takes place when dislonatmigrate simultaneously in a
preferred direction.

The dislocations start interacting and form tangles, arateate regions with relatively
high and low dislocation densities. Eventually, the higtignsed areas link together to
form a cellular structure in which volumes with a low disldoa density, the cells, are
enclosed. The areas with a high dislocation density are ¢ienmalls. An example of
this cell forming for copper is depicted in Figure 2.8. Tygllg, these cells appear after
3% strain and are completely developed after 10 % strains &holution was found by
different authors and for different metals.

As deformation continues, the size of the dislocation cddisreases rapidly, but at a
decreasing rate. Besides that, the dislocations vanishtie cell interiors, and migrate to
the cell walls. In turn, the cell walls increase in thicknassl collapse to cell boundaries.
With higher strainsd > 1) the cell size does not increase any further even though #ie m



2.2 Dislocation structure evolution 13

(a) Developed structure at room temperature. (b) Developed structure at lowered temperature
(125K).

Figure 2.9: The dislocation distribution in a mild steeleafi5 % of shear deformation (Rauch,
1997).

terial is progressively deformed (Sevillarbal, 1981). For lower strains it was observed
that with decreasing cell size the flow stress increases. A much used empirical relation
for this phenomenon is:

_ CGbh

ﬁ

whereG is the shear modulug,the Burgers vector an@ a material constant. This equa-
tionis referred to as the Hall-Petch relation, and is alswkmas the principle of similitude.

This equation describes in a phenomenological way theioaldetween the dislocation
cell size and the flow stress. Although the Hall-Petch ratatvas confirmed, it is noted

that a decreasing cell size is not necessarily the cause afitheased flow stress.

To investigate the influence of the dislocation structur¢hanflow stress, experiments
were carried out by Johnsaet al. (1990). Mild steel was investigated by tensile tests
at cryogenic and room temperatures up to a strain of 10%. Xperenents performed
at room temperature showed the cellular structure, whetreasxperiments at cryogenic
temperatures did not show any patterning. The experimenbsvar temperature show a
significant increase in flow stress; the yield stress for tpeament at room temperature
was approximately 150 MPa and for the test at 201K a yieldstod 280 MPa was mea-
sured. The hardening curves were comparable, but the Hagleate of the test at room
temperature was slightly higher. Subsequently, the sasps were pre-strained at cryo-
genic temperatures were loaded further at room tempetrakeeresulting flow curve now
almost coincided with the material pre-strained at roonypterature. In the second loading
phase, the yield stress of the samples pre-strained at remipetrature and at 201 K have
a yield stress of 315 MPa and the hardening curves are simitiditionally, experiments
were performed with a lower temperature in the second stages found that the temper-
ature in the first stage does not influence the resulting flowesuat lower temperatures.
Similar results were found by Rauch (1997). Indeed, deftiona at lower temperatures
led to a homogeneous distribution of dislocations wherbastést at room temperature
showed a clear cellular structure, see Figure 2.9. Bothaasittoncluded that there is a

o1 (2.17)
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Figure 2.10: A cellular structure obtained by shearing &ispen of a low-carbon IF-steel. The
arrows indicate cell block boundaries (Peetgral., 2001a).

minor effect of the dislocation structure on the flow strésaas found that the dislocation
density, not the structure, dictated the flow stress.

With increasing deformation, the cells of the cellular stawe become smaller and the
walls become relatively thicker. At some point aligned ellls are connected to form a
Cell Block Boundarysee Figure 2.10. They form in turn a larger structure tharirttial
cellular structure, and enclose multiple cells of this lowevel cellular structure. The
CBB’s are characterised by a higher misorientation contptr¢he surrounding material;
compared to the orientation of the external deformatioey thre aligned with the highly
stressed slip planes. Kuhlmann-Wilsdorf (1989) explaires quantitative way how CBB’s
evolve with deformation. Due to their findings, the naméaiv Energy Dislocation Sheets
or LEDSwas introducet!

Lewandowska (2003) investigated the aluminium alloys A851n simple shear de-
formation and found that the evolution of this structureateged on the orientation of the
individual grains. A homogeneous distribution of dislaeas was observed with the grains
having a(1 00) direction parallel to the normal direction of the sheet, Begire 2.11(a).
When the grains are oriented with thiel 2) direction normal to the sheet, a well defined
structure with dislocation walls along thé 1 1} slip planes evolve, see Figure 2.11(b). In
Figure 2.11(b) the orientation of the dislocation sheefsisllel and perpendicular to the
shearing direction.

In Thuillier and Rauch (1994) the dislocation structure didnsteel under monotonic
deformation is discussed. A similar structure exists agntesl in copper (McCabet al,,
2004), the cellular structure is roughly parallel with thear direction. Also, cell block
boundaries perpendicular to the shear direction are formed tensile test, the same
structure exists, but the dislocation sheets are formdhéttto the tensile directior° +
15°) and correspond to an active slip system. The shape of thetste however remains
rectangular.

Although LEDS are considered to contribute to the work haiig, there is no decisive
proof of that so far. The relation between the dislocationcttire and the flow stress is

1n the literature, different terms have been used for thieleglstructures includingell boundariesgeomet-
rically necessary dislocation boundariéSNBs) andcarpet structures
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(a) A nearly uniform distribution of the dislocations. (b) Two sets of dislocation walls formed during de-
formation.

Figure 2.11: The dislocation distribution of the dislocas in a AA5182 alloy afte30% of shear
deformation (Lewandowska, 2003).

consistent, but it seems not to be causal.

2.2.2 Bauschinger effect

The Bauschinger effect describes the decreased flow stitessadoad reversal. In this
research such strain path changes are important to cortsidause they take place in
bending—unbending of the sheet in deep drawing processegxdmine this behaviour,
experiments with simple shear in forward and reverse doestare used to mimic the load
reversal, but also tension—compression tests are perébronevestigate the phenomena.
Most metals show the Bauschinger effect. Different ideathercause of this phenomenon
have been developed and are discussed here.

With deformation in the same direction, the dislocationgnaiie towards the cell walls,
and pile-ups of dislocation evolve. These hamper furthfardeation and increase the work
hardening rate. In general, it is assumed that a load rdvetsases the stuck dislocations
from their positions and because their displacement isrsede they migrate towards the
dislocation free cell interior. Only small stresses areunagl to translate the dislocations
through this area, explaining the Bauschinger effect.

Mughrabi (1983) found that long-range internal stressesaitin crystals with dislo-
cation walls. So called “interface dislocations” occunbetn the highly stressed walls of
the cellular structure and the low stressed internal retyiside the cells. With increasing
monotonic deformation, more interface dislocations appeausing long-range internal
stresses. Upon load reversal, the long-range internalsstseare released and contribute
to the Bauschinger effect. In the same paper, (Mughrabi3)l38composite model was
presented to describe the stresses in the cell walls andrtlee iegions of the cells. Good
results have been achieved and some updated models havdexedoped to describe the
macro mechanical behaviour in this way (Goerdeler and @ats2001).

The micro-structural developments observed in tensiompcession tests consist mainly
of disruption of the cell walls. From observations with TEMvias concluded that the dis-
location wall thickness is not reduced, but the wall breglarta It is also mentioned that
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dislocations move to the cell interior, hereby decreadiggdensity of the dislocations in
the wall (Hasegawa and Yakou, 1975) and hence creating freerapt disruption of cells.
This phenomenon can be used to model cyclic behaviour (©ddslouet al., 1986; Vi-
atkina, 2005).

Rauch (1997) investigated the influence of dislocationcstme on the flow stress in
reverse tests. Samples with a cellular structure were pediry deformation at room tem-
perature and samples with a homogeneous dislocationkdistn were obtained by pre-
deformation at 177 K. The material with the pre-strainingrgbgenic temperature showed
a flow stress that was 10 % lower than the material pre-sulaiheoom temperature. From
this it was concluded that it is the concentration of distmees that drives the Bauschinger
effect, and not the cellular structure.

2.2.3 Microbands

Upon orthogonal strain path changes microbdmds observed in the dislocation structure.
Microbands consist of longitudinal cells with very sharptptlike walls. The thickness of
these cells is 0.2-04m and cross the initial cellular structure. The spacing betwihe
microbands is 4um. They were found mostly in copper and mild steel (Anantatal,
1991; Rauch and Thuillier, 1993; Thuillier and Rauch, 1994)

The microbands have a low dislocation density in the celibaacing the deformation
within the microbands. This is illustrated in Figure 2.12€ITEM image in Figure 2.12(a)
shows the dislocation structure in a sample that is unigxime-strained, after which sim-
ple shear is applied perpendicular to the uniaxial directibhis graph shows clearly that
the shear deformation is localised in the microbands. Infei@.12(b) the localised shear
deformation is schematically illustrated. The initialstture is not deformed, only the mi-
crobands are sheared. About 80 % of the shear deformatitassdsized in the microbands.

The microbands are formed at the onset of the shear defametid are clearly visible
after 4% shear deformation, Figure 2.13. This graph ilates the dimensions of the
microbands and besides shows that the microbands appedisapgear along their length.
The microbands develop with respect to the macroscopiérigaatientation.

Microbands have only been observed in aluminium by Lewars#taf{2003) in AA6016.
However, the observations made in this paper were made2{ft4r of shear deformation
and whereas mild steel shows clear kinks after such defasnsa{Figure 2.12), the mi-
crobands found in AA6016 do not seem to accommodate anyiseceshear.

It is assumed by many authors that the evolution and dedoadat microbands are
the key mechanisms that activate the cross-hardeningt éffexthogonal tests. For the
microbands to evolve a relatively high stress is required,dmce in existence, a lower
stress is required because of the relatively dislocatiea &irea within their cells. This phe-
nomenon is used by some authors as a basis for models thadénstrain path dependent
behaviour (Peetet al, 2001b,a; Teodosiu and Hu, 1995).

2“Microband” is a name that is often used in the literaturentti¢ate long and relatively narrow cells. Sevillano
et al. (1981) observed them in monotonically deformed coppers Was confirmed by Ananthagt al. (1991),
but they call the microbands observed after a strain pathgghaecond generation microbands (MB2).
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(a) Microbands (indicated by arrows) in mild steel (Theilland Rauch, 1994).

e T
1 =1
initial orientation

(b) A schematic representation of the offsets in the mdtarituced by the
microbands. The arrows indicate microbands.

Figure 2.12: lllustration of microbands in the dislocatstructure after 20 % pre-strain in tensile
direction (T.D.), followed by 12 % shear deformation.
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Figure 2.13: Microbands (indicated by arrows) in mild st@él% pre-strain in the tensile di-
rection (T.D.), followed by simple sheay, = 4 % (Thuillier and Rauch, 1994).

2.3 Conclusion

This chapter illustrates some of the basic concepts in thaeftiog of plasticity. The “clas-
sical” material models describe the hardening behaviaependent of the strain path. To
describe a load reversal, the concept of kinematic hardesimtroduced. However, full
strain path dependent material models are still “exotic”.

The dislocation structure that evolves during plastic defition has been investigated
to find the relation between the mechanical behaviour ande¢Helar structures that are
present in the material. In the literature the relation leemthe mechanical behaviour and
the structures that evolve on micro-scale are describadhbre appears to be no decisive
evidence that the dislocation structure is the drivingédrehind the mechanical behaviour.
Experiments with two-stage orthogonal strain path chahgee been investigated, but the
experiments with a continuous strain path change have reot bwestigated so far. The



2.3 Conclusion 19

continuous or fluent strain path changes, as they are appliadleep drawing process,
are not represented by the strain path dependent expesiinghe literature. They are all
sharp with elastic unloading between the deformation modesthis end, the WENTE
BIAXIAL TESTER, which can prescribe such strain paths is introduced in @nh&» The
experiments performed with this testing device are themsiciened in Chapter 4.






3. The Twente biaxial tester

The sensitivity of the mechanical behaviour of sheet meiéh wespect to strain path
changes is investigated in this work with thevENTE BIAXIAL TESTER. This testing
device can load a specimen in both the tensile and sheatidirscBoth loading directions
are individually controlled and are used in this work to gpgtrain path changes to the
material.

In this chapter the WENTE BIAXIAL TESTER is presented and the procedure to de-
termine stress—strain curves is discussed. The straima@asured from the surface with
a digital camera and the stresses are determined via the-$ertsors. The homogeneity
of the deformation area is assessed with advanced digitadéncorrelation software that
measures the deformations locally. The stresses are tedighdth a FE calculation of the
deformation area. This chapter also shows that the defaymat the test equipment itself
is important in the control of the strain path. A simple alon is presented that allows
for the compensation of the elastic deformation of the tgatmment.

3.1 Goal of the test equipment

Classically, uniaxial tensile tests are used to determinardening curve and fit the yield
locus parameters. This is sufficient to simulate a sheetlrfe@taing process. However,
in sheet metal forming processes the stress state will begaig and will not always
coincide with the uniaxial stress state. Furthermore, tr@rspaths that occur in a sheet
metal forming process are not monotonic and mostly nongmamal, hence the uniaxial
tensile test cannot fully represent the loading situattbasoccur in a true forming process.
To investigate the mechanical behaviour of sheet metalenmidergoing strain path
changes, a more advanced experiment than the uniaxialetdast is required. At the
University of Twente a biaxial testing device was develoghed loads a specimen of sheet
metal in tension and shear (Pijlman, 2001). The truly eXoept advantage of theWENTE
BIAXIAL TESTER is that continuous strain path changes can be applied wililnsasur-
ing the stresses. This s a big leap forward compared todldéiwnal uniaxial tensile tester.
Monotonic hardening curves in shear or tension can alddstineasured. Finally, the me-
chanical behaviour under cyclic loading can be measuredh&@yapplication of reversed
simple shear to the sample. Hence, tiveENTE BIAXIAL TESTER supplies many different
mechanical experiments in one machine. The goal of therteste measure the harden-
ing behaviour of the material. The elastic properties aredatcurate measurement of the
elastic—plastic transition of sheet metal is not of crurtgdortance in the test equipment.
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Figure 3.1: The shape and dimensions of the sample in mm. [Blok bnd cross-hatched area
represent the deformation area and the clamped area, ti@specThe zoom shows
the dots that are used to measure the deformation.

The TWENTE BIAXIAL TESTER was developed to perform experiments with strain path
changes to) investigate the mechanical behaviour and understandanészhs on a micro-
structural level, andi) to develop and fit material models to the measured stresst-st
curves.

3.2 Working principles

The specimen dimensions used in the biaxial tester are @it Figure 3.1. The thick-
ness of the samples is between 0.7mm and 2.5mm. The lower@pet parts of the
sample are clamped in the machine, leaving a deformaticinmesf 45 x 3mm. The
height of the deformation area is small with respect to thektless in order to apply sim-
ple shear without the material buckling. Also, in order tedna large area of homogeneous
deformation, the width of the deformation area is large sTimposes a plane strain condi-
tion in the transverse direction of the material in the canzgion of the deformation area.
Towards the edges of the deformation area the deformatide @il tend to the uniaxial
stress state.

The biaxial tester is based on a traditional tensile testss, Figure 3.2(a). Between
the 2 cross bars an additional framework is mounted thatraneudates the actuator for
the shear deformation. By using a construction of bearingsoth the horizontal and
vertical directions it is possible to translate the clamgstearily in the horizontal and
vertical directions, hereby applying simple shear or t@msiespectively. Both actuators
are equipped with force sensors to determine the streseesd&formation is determined
from the positions of black dots that are applied to the serfaf the specimen and which
are in turn tracked by a digital camera.
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(a) Picture of the experimental setup.

controller camera

S S R bt

(b) Schematic of the biaxial test setup.

Figure 3.2: The biaxial test equipment.
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3.2.1 Test procedure

The test procedure for an experiment starts with writingrgout file for the controller,
Figure 3.2(b). This file contains the description for the ement of the actuators. This
can be done explicitly, but also functions can be programbased on input frore.g.the
force sensors. After the dots are applied to the sample,gdeiraen is mounted in the
machine. Next, the camera is positioned and is focussedhathid of a LaABVIEW appli-
cation installed on the PC. Via this application the testasted and all the data is logged:
time, position of the dots, force-signals and the actuaispldcement. Depending on the
camera’s view, up to 40 data sets per second can be storeghidaltgxperiment takes 50
minutes, where 30 min is spent on the mounting and disasgeshlthe sample; 8 min on
sample preparation, and 12 min on camera positioning arfidrp@ng the experiment. The
actual experiment in which the deformation is applied tdkés 10 min.

3.3 Strain measurement

The deformation of the sample is reflected in the change ottledinates of the dots
as represented in Figure 3.3. To determine the strainFitensor must be determined
that maps the reference configurati@g to the current configuratiof2;. Assuming a
homogeneous deformation field, Equation (2.10) is evatbatth dx — Ax:

Ax = FAX (3.1)

The vectorsAx andAX represent the lines between the dots in the initial confignmand

the configuration at time. In the case of deformation in 2D, in the plane only, 3 dots are
required to fully determine the strain field. From these dutly 2 vectors are needed to
determine the componentsBf In matrix-vector format this reads:

Axl F11 F12 0 0 AX]

Ayi| _|F1 F22 O 0 AYy (3.2)
AXz o 0 0 F11 F12 AXz )
Ay 0 0 Fr1  Fpy AY,

This system of equations is fully determined, and the appbo of more dots will result in

an over-determined system. From a theoretical point of vieare dots do not contribute
to a better description df. In the experimental setup, however, noise is measurecdeat th
positions of the dots, and this affects the determinatioR.offo this end, more dots are
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Figure 3.3: The displacement of the dots indicates the deftion.
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applied, such that the effect of the noise in the measureimaetiuced. In the absence
of noise and for a homogeneous deformation field, more vectm be used such that the
following holds:

Ax1 _Fu F12 0 0 T AXl
Ay o1 F»n 0O 0 AY;
A.Xz 0 0 F11 F12 AXZ
Ay \ _ | O 0 F Fx AY, (3.3)
Axy Fii Fio | |AXg
Ayk B 1 Fa | | AYy

This equation is written such that the components offthensor are arranged in a vector
FY and the initial vectora\X; are collected in the matriA:

Ax1 _AX1 AYl 0 0

Ayl 0 AX] AYl

Axs Ax, AY, 0 0 Fu

Ayl —| 0 0 AX; AV | 1[0 —  Ax=AF (34)
Axi AX; AY; 0 0 F2

Ays 0 0 AX; AYs| 22

For the displacement measurements of the dots howeverdhition cannot be fulfilled
due to the noise and thus:

Ax ~ AFY (3.5)

In this work, a least squares approximation was used tomate" such that the errorin
Equation (3.4) is minimised. Formally, the following reséd function has to be minimised
to find FV:

n
g(F) =) (Ax; — FuAX; — FAY)? + (Ayi — P AX; — FpAY;)? (3.6)
i=1

To determingFfV from this equation is a lengthy operation. To this end, Eigua3.4) is
rewritten such that Equation (3.6) is minimised:

Ax! =

AFY =
ATAx! ATAF =
F* = (ATA)TATAX! (3.7)

The advantage of this procedure is that the mairineeds to be determined only once at
the beginning of an experiment. Especially in a setting whbe deformation is calcu-
lated in real time this is beneficial for the processing spéaith F in hand, following
Equation (2.11), the velocity gradient can be calculated:

LAt ~ AF-F! (3.8)
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Figure 3.4: Properties of the deformation measurement fatebsary situation.

which is true if the time steps used are small. To presentdbalts of the mechanical
experiments of the samples tested on theeNTE BIAXIAL TESTER, L is not decomposed
in D andW, but the logarithmic strains are determined directly flbm

Ae =L (3.9)

This expression holds for small time steps and for propoditobading. For a non-proportional
loading scenario that describes a deformation path witffila¢ configuration equal to the
final configuration, a non-zero strain may be obtained (Behkoet al,, 2006). It is noted
that the TWENTE BIAXIAL TESTER is also used for non-proportional strain paths, but for
the presentation of results this is acceptable.

3.3.1 Accuracy of the strain determination

To measure the deformation of the material, 2 options wensidered; strain gages and
optical strain measurement. Strain gages are known for khgh accuracy, but are not
applicable to the small deformation area. The smallesinsgage that could measure
tensile, transverse and shear strain was 3.5 mm high, wkizdeds the 3.0 mm height of
the deformation area. Also, strain gages and the smalles iongarticular are difficult to
mount on the sample which would lead to a more lengthy proeeftr the experiment.
The optical strain measurement used here has the advariftéogeng accurate while it
requires only limited amount of preparation time. In thistg®, the accuracy of the strain
measurement with optical strain measurement is investigat

The weighing function that determines the coordinate ofihiedistinguishes between
the edge of the dot and the centre of the dot. The “blackndaiecedge changes during
a test because the sample moves with respect to the lightesodihis causes noise on
the coordinate of the dot and hence also in the strain caionlaThe influence of the dot
size on the noise is illustrated in Figure 3.4(a) by meansdift2 with different diameters;
0.3mm and 0.6 mm. Smaller diameter dots than 0.3 mm cannotle mith the current
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tools. A dot with a diameter larger than 0.6 mm would conttétio an even higher accuracy
of the measurement, especially if the deformation arealig fiumogeneous. However,
dots with a diameter larger than 0.6 mm do not seem to be tieaiisrepresent a true
“material point”. Hence, a diameter of 0.6 mm for the dots @lagsen as a maximum. The
dots are applied to the deformation surface by manuallyestjng the silicon kit through a
mask with the indicated diameters. It is recognised thatghdcedure does not allow for a
perfect circular dot. Results of the stationary test shat the noise of the dot position of
the large dot ist0.15 pixel and for the dot with diameter 0.3 mm the noise is apprately
+0.30 pixel. Indeed, a larger dot gives better accuracy in theutation of the its position.

Not only does the size of the dots matter, but also theirivgatosition. For a good
accuracy of both the tensile and shear deformations, treestmuld be positioned on the
corners of a virtual square. However, the deformation afdhedrsample measurds$ x
3mm?. When the complete deformation area needs to be capturbdheitamera with a
square light cell, the relative resolution in the tensitediion will be lower than in the shear
direction, because the shear direction can use the full efetve camera. To increase the
relative accuracy of the tensile deformation measurenti@atamera view was limited to a
square of 12 mm of the total area of the deformation area. Dtieetrelative height of the
deformation area, the dots are divided over 2 horizontastian upper row and a lower row
of dots (see Figure 3.1). To determine the tensile defoanathe accuracy is optimised by
placing the 2 rows as close as possible to the lower and upgeraf the deformation area.
In practise 1.7 mm distance between the 2 rows is used. Thsveese and shear strains
can be determined more accurately because the maximunmeksketween the dots on
the left and on the right is 12 mm. Hence, the influence of therén the horizontal dot
position is spread over a large distance. Besides, vedtatsbnnect 2 dots in the same
row contain information only on the transverse deformatighich is assumed to be zero,
due to the plane strain condition. In the calculation of ttnais, only vectors connecting
the upper with the lower row of dots are used, as the vectoFsgare 3.3. The distance
between the 2 rows is approximately 150 pixels. The absarta in the tensile strain,
based on the mentioned data and for only one dot in the lowkupper row, i2- 1073 (-).
This value is relatively poor, the elastic region of stediraat be measured satisfactory with
such an error.

Figure 3.4(b) shows the tensile strain in a stationary tesitiich 16 dots are used for
the calculation of the strain. The size of the dots is 0.6 mthzarows of 8 dots are applied.
The strain is calculated according to Section 3.3. It shtnasthe error in this measurement
is approximatelys - 10~* (-). With this accuracy it is possible to observe the eladtimain
in the tensile tests. Accurate measurements of the elastiaviour is not the objective of
the test equipment, but it can provide a useful indicatiothefelastic properties.

3.3.2 Validation

The strains in the biaxial test setup are measured by takie@terage strain calculated
from the positions of 16 dots on the surface of the deformategion. However, the
stresses and strains are not uniform over the completerdafm area, due to boundary
effects and slip between the clamps and the specimen. Thesemena lead to two effects
that need to be investigated in greater detail:
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Figure 3.5: Results from RamIS in a simple shear test on DC06. The shear strain distribution
on a cross section over the specimen is displayed for evérgt@ear strain in the
central region.

1. inhomogeneous deformation over the deformation areaodsip;

2. the transition from plane strain tension in the middlehs specimen to uniaxial
tension at the free edge of the sample.

To assess the uniformity of the strain in the deformatiomatiee optical strain measure-
ment system RAMIS is used. With this digital image correlation software thedlicstrains
over the complete deformation area are measured. Resullte aftrain distribution for
plane strain tension and simple shear are presented. Tihiesrase used to investigate the
slip and the homogeneity of deformation.

The GOM ARAMIS 4M system, that is used in this work, consists of 2 cameras and
software that calculates the deformation field. To interfire surface of the deformation
area, it is sprayed with a white background, after which a fileek speckle pattern is
sprayed over it. The software recognises the surface ofd¢femation area, characterised
by the black dots. The deformation ardax3 mm) is “discretised” by RAMIS in 165x11
recognised squares. All the squares define coordinateshwhiurn are used to calculate
the strains.

Figure 3.5 shows the results of the strain distribution irnapge shear test. A good
strain distribution is obtained with the simple shear teggn at elevated strains. The edge
effects are minor, at most 3 mm at each side of the specimamssthat the shear strain is
zero at the very edge of the material. Approximately 95 % efdbformation area is in the
same stress state.

Figure 3.6 shows the results of the tensile test with graplismnsverse strain, tensile
strain and theR-value as a function of the horizontal coordinate throughrthiddle plane
of the specimen. Approximately 25 mm of the deformation ateavs a transverse strain
of approximately 0, indicating the plane strain conditidfowards the edges, material is
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Figure 3.6: Results of a tensile test on DC06 captured wigaMis. Transverse strain(a), ten-
sile strain(b) and the ratio of these (c) are plotted as atifomaf the horizontal
position on the sample. The strains are measured along atlivaf the height of the
deformation area at intervals of 0.05 tensile strain in gr@ml region.
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Figure 3.7: The distribution of the transverse strain olilerdgample at 15 % tensile strain.

pulled inwards, hence the plane strain condition gradualigs into the uniaxial stress
state. Thek-value is determined via Equation (2.7):

R=2-__ % (3.10)
&5 &x + &y

The R-value of DC06 equals 2.5, which is indeed observed at thehkid side of the
specimen where the uniaxial stress state is present. Oigtitdhend side of the specimen,
this value is not clearly observed. Th&rRAmIS system cannot measure on the actual free
edge of a material, and here the discretisation of the amatislose enough to the edge to
capture the actuak-value. Furthermore, it is worth mentioning that from thstdbution
of R-values over the width of the specimen, it can be concludatittte ratio between the
tensile and transverse strains is constant for all levelsridile strain.

In Figure 3.6(b) it is shown that the tensile strain is not lbgeneous over the width
of the deformation area. Near the edges of the sample thietsten is larger than in the
central region. Probably this is due to the clamping of trezspen. Four bolts are mounted
at the sides of sample, near the edges of the deformatiomrelgis quite possible that the
local forces from these bolts cause a non-uniform clampimgef. It is expected that the
edges would show the largest tensile strain, because thatiaias also closest to the bolts
that provide the clamping. However, the peak of the tensilErsis not at the very edge
of the sample but slightly shifted to the centre, dependimghe amount of tensile strain.
This may be due to the transverse stress that “draws” therialatmvards the centre of the
specimen. In its turn, the transverse displacement of thenmhat the edges facilitates
slip in the tensile direction. Due to the tensile slip, lesain is accumulated in the tensile
direction. Figure 3.6(a) illustrates this reasoning. Thasverse strain also does not show a
peak at the edge, but closer to the centre of the specimerardiethe edge, the transverse
strain decreases. Furthermore, due to the different sstatss of the edges and the central
region, uniaxial tension and plane strain tension respagtidifferences occur. For the
plane strain deformation mode, the assumption of no plaslieme change can only be
fulfilled if the thickness strain is of the same oder of magaé as the tensile strain. At the
edges, where the uniaxial stress state exists, the trasgsaead thickness strains together
compensate the tensile strain. Hence, the material in thiead@egion of the deformation
area is more easily pulled away under the clamps due to a lihneokness.
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Figure 3.8: Undeformed mesh (not on true scale) of the deftiam area, with the arrows show-
ing the reaction forces and the circles indicating the “dimtisthe calculation of the
global strain.

In this work, the material is considered to be in the planaisttondition if the tensile
strain in the peaks is no more than 5% higher than the straineicentral region. From
Figure 3.6(b) it is observed that 15 % tensile strain in thereé region is the boundary for
which the deformation is still considered homogeneousctna experiments this is easy
to control, because the central region is also used for ttessarement of deformations.

Figure 3.7 shows the transverse strain distribution in ¢émsite test at approximately
15% of tensile strain. This graph illustrates that the tvense strain does not have a
gradient across the height of the specimen.

3.4 Stress measurement

In the former section, it was assumed and verified that tlanstield is uniform. In this
section it is assumed that the stress is homogeneous, awlithis the strain domain at
which the plane strain condition is fulfilled. The true st®s are determined from the
force sensor and the current cross sectional area of thendafion zone. The current
thickness is calculated with the thickness strain that ferdeined from the transverse and
tensile strain and the assumption that the material doestraot plastic volume changes:

) = —(ef + &5) (3.11)
Which is used in the calculation of the tensile simple sheass

F,
oy = : Y 5 (3.12)
width x thicknessx exp ¢
Fyy

Txy width x thicknessx exp &? (3.13)

The validity of this calculation depends on the assumptiothe homogeneous stress
distribution across the deformation area. This is invaséid in the next section.

3.4.1 Validation

This section describes FE simulations to assess the sted®¥ier the deformation area.
To this end the coordinates of the squares, derived by tRevAs system, are used to
define an initial mesh. The displacements of the upper andrid®oundary nodes of the
deformation area are used to describe the displacementedadthtion. In this way, the
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Figure 3.9: Stress—strain curves for the 3 simulations.

exact deformation experienced by the material is used ifrErxgimulation. The Hill '48
yield criterion and isotropic hardening according to Svsftused to model the material
behaviour. Simulations are only performed for the planaistrension test, since the ho-
mogeneity of the deformation area in the simple shear testéssmed to be sufficiently
accurate.

Three simulations are performed to investigate the homeigeof the stress state in
plane strain tension. The first simulation uses the mesh aoddary conditions defined
by the measurements fromRAMIS. The stress—strain curve is calculated in a similar way
as the procedure in the experiments. The tensile force exm@ted by summarising the
individual tensile forces on the upper boundary nodes (semva in Figure 3.8). The
strains are determined by tracing 4 nodes in the mesh, rpieg the dots on the speci-
men (the circles in Figure 3.8) and calculating the straamfithat. The second simulation
is a one-element test to display the actual stress—straue af the material. This simula-
tion represents the true mechanical behaviour. In the gindilation, the ideal experiment
is imitated. A perfectly rectangular mesh is used for theesentation of the deformation
area. The upper and lower boundary nodes are constrainkd hotizontal direction and
the tensile test is simulated by moving the upper boundadggadn the vertical direction.
The stress and strain are calculated as in simulation 1. éJstip and non-uniform defor-
mation due to slip is excluded in this simulation. It is exjgeidhat the stress—strain curves
from simulation 2 and 3 coincide. Simulation 3 only showsitifeience of the boundary
effects near the free edges. Indeed, Figure 3.9 shows thatribss-strain curve of simu-
lation 3 is only slightly lower than the actual material beloar represented by simulation
2. Simulation 1 represents the actual test with tieERTE BIAXIAL TESTER. Due to slip
in the clamps, the sample is not uniformly stretched, resyih a stress—strain curve that
is 2% lower at 22 % tensile strain.

Similar global stresses in the simulations do not necdgsadicate that the plane
strain tension test is a good representative for the cotigétbehaviour under plane strain
conditions. To this end the tensile stresses are examiaedkigure 3.10. The shown stress
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Figure 3.10: Calculated tensile stress distribution indduaple at 15 % of tensile strain.

distribution is at 15 % tensile strain, since this strainaetl the boundary for homogeneous
tensile deformation. Itis remarkable that despite theiiggmt slip between the clamps and
sample, the tensile stress appears to be very homogeneeuthewspecimen. Boundary
effects are observed at the free edges, but 85 % of the testisdles lies between 440 and
465 MPa. Towards the edges, the stress drops to 340 MPa. drnisecpartially attributed
to the present uniaxial tensile stress state because ofgbatige. On the other hand, as
observed in Figure 3.6, slip is present in this area, leattireglower tensile strain and thus
a lower stress.

3.5 Strain path control

The biaxial test equipment was designed to test materiaf®arproportional strain paths.
However, the finite stiffness of the machine itself plays acal role here, which was
already noted in a theoretical study by Kuroda and Tvergés®89). The clamp dis-
placement needs to be controlled during non-proportiasist but the controls act on the
displacement of the actuators. The force is transmitteu thee actuators to the clamps via
solid steel bars, bolts and bearings. Due to the limitethstss of these parts, the displace-
ment is not accurately controlled. Naturally, this probleoturs also in regular tensile
tests, but the mechanical equipment can be made stiffeubealy tensile deformation
is required.

A significant influence is observed when an orthogonal tepeiformed without un-
loading, see Figure 3.11. In the first part of the experimemsite deformation is applied.
Hereby the material stretches, the stress increases, duesh equipment itself is also
stretched. During the shear deformation, the verticahdist between the lower and up-
per clamp should remain constant. However, because of thegahg stress state in the
material, the tensile stress drops. This in turn release$otite in the equipment and the
stretching relaxes, moving the clamps from each other andéhancreasing the tensile
strain in the specimen. With decreasing tensile stress segenlibrium is found, but at the
cost of more tensile strain and hence higher tensile sge3se outcome of such a test is
shown in Figure 3.12. It shows that the tensile strain isaased by 6 % in the shear phase
of the test. This clearly indicates that to perform experitaevith continuous orthogo-
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Figure 3.11: Scheme of the orthogonal test in the biaxialegsipment.
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Figure 3.12: Tensile and shear strains during an orthogesths a function of time.
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Figure 3.13: Force as a function of the actuator displacéniédre dots indicate the measurements.

nal strain paths the flexibility in the frame must be compé&shaThis is explained in the
following section.

Stiffness compensation

To determine an algorithm for compensation of the stiffnéswas first examined how
the test equipment responds to forces. The stiffness of tEhime is examined by mak-
ing a force—displacement curve of the test equipment itsiif infinitely stiff sample is
mimicked by placing a solid steel block between the clamps.séch, the measured dis-
placement is purely a function of the test rig, not of thegdshaterial. The displacement
of the actuator was measured manually and the force was nmeeksith the force sensor.
The results of this test are plotted in Figure 3.13. A linedattion can be recognised for the
simple shear direction; the stiffness was found takae= 18 - 103 N/mm. In the tensile
direction a nonlinearity is observed at the initiation of force. The stiffness for the linear
part (F > 1500N) is: K; = 35-103N/mm. Because the nonlinearity is only observed
at lower forces, a simple linear relation is exploited to pemsate for the stiffness of the
machine:

dF = Kidy (3.14)
This equation is discretised such that it can be used in an lopg feedback system:
AF
Ay = — 3.15
Y=z (3.15)

The force incremeni F is determined by two subsequent force measurements within a
certain time interval. The incremental stretch of the tgstigment (Ay) is the result of the
force interval divided by the stiffness of the test equipimdine value ofAy is used as a
prediction for the stretch during the next time interval asduch prescribed to the actuator.
This program is implemented in the motion controller (Fey®.2(b)) and successfully
applied in Section 4.5.2.
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To really prescribe the strain path in experiments, a feekllsgstem based on the
strain measurement is required. The algorithm describesleaprovides a control loop
for orthogonal strain path changes, but not for an arbitstirgin path. This proved to be
challenging due to some technical issues, whereby thistisasily embedded in the soft-
ware. The advantage of feedback on force, as presented.b) (& that the feedback loop
is implemented in the controller, see Figure 3.2(b). Therodier handles loops, includ-
ing a force reading, at a maximum rate@0s~!. The strain measurement however, is
done on the PC with ABVIEW, at a maximum rate cf5s~!. Some tests were performed
with feedback on strain, but due to the low rate of data adtipns the strain could not
accurately be controlled. For future work, it is worth intreg this feedback, because the
versatility of the test equipment could be increased sicgifly.

3.6 Conclusion

This chapter introduces the biaxial test equipment andhigsacteristics. It explains the
procedures and the setup of the total experimental rig. $esasthe uniformity of the
deformation field in a tensile and shear test, theafis system was used to measure
the strains in the complete deformation area. It shows thatiimrm deformation field
is obtained in simple shear deformation. In tensile defdionathe thickness is reduced,
which facilitates slip of the sample from between the clantipgxperiments with a tensile
strain higher than 15 % in the central region of the sampéedtfierence with tensile strain
at the edge of the sample may exceed 5 % strain. Hence, tedksiplane strain condition
in the sample, tensile strains should be considered up to.15 %

The strain measurement in a regular experiment is captyrérditing 16 black silicon
dots that are applied to the surface of the deformation dtegas shown that larger dots
give a better accuracy of the dot position. Due to the largebyer of dots, the least squares
optimisation of the strain provides a low level of noise oa #irain measurement. The
accuracy of the tensile test was at least5 - 10~#, which is sufficient to give an indication
of the elastic properties. The shear strain can be detednim@e accurately, because
the dots are further apart in the transverse direction. Tiess distribution of the plane
strain test was examined with FE-simulations, which shat tthe plane strain tension test
presents the stress curve accurately to 15% tensile strain. Hence the stress—strain curve
in plane strain tension can be accurately measured &1ptd 5% tensile strain. For simple
shear deformation, the strain is uniform over the sample thus the related stress is also
uniform. The stress-strain curve for simple shear can foerébe used in the complete
deformation domain of the WENTE BIAXIAL TESTER.

For controlling experiments, and in particular non-prdjooral tests, it was shown that
the limited stiffness of the test equipment can affect trespribed strain path. A compen-
sation algorithm was implemented based on the feedbackad find successfully applied
in Chapter 4.



4. Experiments

Mechanical experiments serve to establish material ptiggethat are required for engi-
neering applications of these materials. The goal of thagptdr is to investigate actual
strain path sensitive behaviour. Based on the observedoptema, material models will
be elaborated in Chapter 5. The experiments show the mexgidr@haviour during pro-
portional and non-proportional deformation, and are usedetermine the material pa-
rameters. Additional non-proportional experiments, inahitcyclic shear and tension are
combined, were performed to validate the material moddis.mechanical behaviour was
tested using the WENTE BIAXIAL TESTER because different strain paths and different
strain path changes can be applied to the materials. Forgasbn the uniaxial tensile test,
which would be an obvious choice for materials researchoisised in this work. In this
thesis only the mechanical behaviour is considered; texand microstructure evolution
are not investigated in the experiments.

Firstly, the test scheme is introduced. In Section 4.2, thigodropic yielding behaviour
of the materials is discussed. The influence of the stragaatthe stress—strain curves is
investigated in Section 4.3. Cyclic tests are discusseaati@ 4.4.1 and the orthogonal
experiments and the characteristic material behavious@udsed in Section 4.5.

4.1 Outline of experiments

For more advanced material models, experiments with mamotoyclic and orthogonal
deformation paths need to be performed. Issues that akantior research are the strain
rate dependency; the anisotropy in initial yielding; theuBzhinger effect and the cross-
hardening effect. The following tests were performed toneixe these phenomena:

Monotonic tests Monotonic tests were performed in the plane strain tensi@ttion and
in simple shear. Experiments with different strain ratesageerformed to determine
the reference strain rate in the experiments. To examinars®tropy, experiments
with different loading directions with respect to the mdidirection were performed.
DCO06 was used to determine the reference strain rate angbtorexthe anisotropy.

Cyclic tests To investigate the Bauschinger effect, reverse sheamestsperformed. The
pre-strain was varied in these tests to observe the evolawiche phenomenon.
Three strokes were applied, such that two loading revergats applied. From
the literature on similar experiments, the phenomenatititisd in Figure 4.1 were
expectedi) theBauschinger effeds the phenomenon whereby the flow stress after
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Figure 4.1: The different phenomenon in cyclic loading.

the load reversal is lower than before the load reversalhAtsame time, the flow
stress after the load reversal is often hard to determinausecof the smooth transi-
tion from elastic to plastic deformation. For the definitifithe Bauschinger effect,
the flow stress after the load reversal is defined as the stiese the curve starts
to deviate from the linear lineii) Transient hardenings the term used to indicate
the smooth transition from the elastic to the plastic regiiingWhen the material is
again plastically loaded after the load reversal, some nia¢ggeshowwork hardening
stagnationi.e. the stress does not increase during reverse loading. Witkasing
strain, hardening is resumed.

Orthogonal tests In the experiments with orthogonal strain path changespResgtially
linear, but orthogonal, strain paths, are prescribed. TWeNTE BIAXIAL TESTER
is used to change the strain path from plane strain tensi@intple shear. The
shear direction is perpendicular to the tensile directi&train path sensitive ma-
terial shows the typical overshoot after the strain patmgkathe so-called cross-
hardening. These tests were performed with elastic uniggalfiter the applied ten-
sile deformation. In true deep drawing processes, how#isrmore likely that an
orthogonal strain path change takes place without unlgadFor that reason the
orthogonal strain path change was also investigated fontimemus stress path, by
omitting the intermediate elastic unloading. Additiogathe experiments without
elastic unloading were used to obtain an indication of tlwallshape of the yield
locus.

4.2 Anisotropy

Steel sheets are produced from solid blocks of steel byngpllivhich introduces a texture
in the material. Hence, the mechanical behaviour of the nighie direction dependent.
For the materials used here, the anisotropy is known and éas guantified by Corus.
DCO06 was used as a test case to verify that the data from threrimgnts performed on
the TWENTE BIAXIAL TESTER could be used alongside the data from Corus. Plane strain
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Figure 4.2: Experiments on DCO06 for the transverse andngldirection. The strain rate is
constant for all testst = 1- 1072571,

tension tests in RD and TD were performed, and a simple slesamith the shearing
direction parallel to the TD was done. Because the simplarstest is actually a pure
shear test a#5° (Figure 4.3), experiments were performedat 45° and 90° with RD.

It is recognised that anisotropy is normally determinechwihiaxial tensile tests, but in
this work the relation between the external experimentakvemd the experiments on the
TWENTE BIAXIAL TESTER heeded to be confirmed.

The results of the experiments are presented in Figure 4a@ phenomena are ob-
served in these test§; the initial flow stress in the transverse direction is cheduigher
than the stress in the rolling direction and the stressiastnarve of the transverse test
remains above the stress—strain curve from the tensiléntd®D. ii) The elastic—plastic
transition is more pronounced in the transverse test comapgarthe test in the rolling di-
rection. The experimental values from Figure 4.2 were cosgbavith the measurements
from Corus and the agreement was satisfactory.

deformation stress state principle stresses
\ /

— AN

Figure 4.3: Simple shear in the transverse direction. Thekbhrrows indicate the RD.
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Figure 4.4: Plane strain tension tests on DC06 with diffestrain rates. The strain rates are:
0.065s~1,0.0115~ 1 and 0.005~! for Tests 1, 2 and 3, respectively.

4.3 Strain rate effects

The goal of this section is to determine a reference straafta the experiments of the
investigation of strain path sensitivity. The maximum istreate in the experiments is
constrained by the maximum rate at which the deformationbmatogged. The camera
captures the images and from experiments with differetingst of illumination, dot size
and the size of the area that is recorded, it was observedhbanaximum frame rate

is approximately 36~!. The minimum strain rate is not constrained, but needs to be
representative for forming process. Also, in the experim@erformed on the WENTE
BIAXIAL TESTER large strains can be applied to the sample. From a practaat pf
view, it is desirable to keep the time required for the experit as short as possible.

In Figure 4.4 three plane strain tensile experiments on D@i@6different strain rates
are presented. In test 1 a strain rate of 0.065was measured. It is observed that the
number of data points in this experiment was relatively $nhehding to a rough stress—
strain curve. Test 2 has a strain rate of 0.§14 In comparison with test 1, the stress—strain
curve of test 2 has a smooth evolution, without the bumpsrebddn test 1. In test 3 a
strain rate of 0.005~! was applied. As test 2, the stress—strain curve is smooth.

The mechanical behaviour of the DC06 under different straii@s is comparable. The
curves show a similar trend, only test 1 shows an awkward fifuat the start of the
deformation. This may be due to the sudden application ofdfree to the test equipment,
causing a vibration in the construction and leading to a jumghe force. Quantitatively,
the measured flow stress increases with increasing stii@in ra

To exclude the influence of strain rate in the experimentssthain rate should be as
low as possible. However, from a technical point of view tkisot possible and hence a
reference strain rate of 0.81! in equivalent plastic strain was chosen for the remainder
of the tests.
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4.4 Cyclic deformation

In this section different experiments with cyclic shear ba TWENTE BIAXIAL TESTER
are discussed. Firstly, the experiments with only cycliesshare discussed. These ex-
periments will be used in Chapter 5 to determine the paramefethe material models.
Additionally, experiments with cyclic shear under congdwplane strain tensile deforma-
tion were performed. These tests are used in Chapter 6 tavalthe material models
presented in Chapter 5. The strain rates for these testpprexamately 0.0% 1.

4.4.1 Cyclic shear

The experiments with cyclic shear are presented in thissedDifferent amounts of pre-
strain were used in these experiments to determine theilootidn of pre-strain. To apply
the shear deformation to the sample, a prescribed amouigmiddement was imposed on
the actuator. Due to the limited stiffness of the test eqeiptnnot all the displacement of
the actuator was transferred to the sample (see also Ctgptdence, a thicker specimen
or a specimen with a higher flow curve is strained less thareeisgen with a lower flow
curve. This explains the different amounts of pre-straimieen the different materials. In
the reverse stroke, the actuator is moved to its maximuniadisment. In the third stroke,
the maximum displacement is again covered, but in the oppdsiction.

DCO06 In Figure 4.5 the results of 3 cyclic tests on DC06 are presknA characteristic
of mild steel is the pronounced Bauschinger effect, obgskmell experiments for both
reversals. This effectis relatively large, approximag8dMPa. Transient hardening occurs
after all reversals, but the effect seems to be independémt amount of pre-strain. For alll
the experiments, for the first and second reversals, thei@aihhardening appears within
approximately 2.5 % shear strain. The stagnation of worlléraing was found to increase
with pre-strain. As described in Chapter 2 this effect issealby the piled up dislocations
that are released from their position after the load rever$he easy migration of the
dislocations facilitates the deformation, which leads toveer flow stress. After the first
load reversal, the change from the work hardening stagm&icontinued hardening can
be clearly determined. After the second load reversal, #iiddning rate is so low that the
difference between regular hardening and the stagnatiomotdoe distinguished.

AA5182 From experimental results, depicted in Figure 4.6 it is ole=e that AA5182
shows the Bauschinger effect, but not as pronounced as DG&§ dn experiment 3 the
Bauschinger effect is approximately 50 MPa. The transiantiéning effect takes place
within the first 2.5 % after the load reversal. Stagnation ofknhardening does not occur,
even if the pre-strain is relatively large. In these expernits, all the samples fail at the
second load reversal. Despite the lower stiffness of AAS 182 strains at the end of the
strokes are lower compared to the DC06 material. This is dubd larger thickness of
AA5182 compared to DC06, 1.0 mm and 0.7 mm respectively. BleA&5182 requires
more force, and because the displacement is prescribe@ aicthator, more elongation
is absorbed by the test equipment and does not contribubetshiear deformation in the
specimen.
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Figure 4.6: Cyclic tests in simple shear on AA5182.

H340LAD The results of the experiments with cyclic loading on higlersgth steel are
presented in Figure 4.7. The largest Bauschinger effectolsasrved in experiment 3
and was approximately 120 MPa. The transient effect in trasenml was smeared out
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Figure 4.7: Cyclic tests in simple shear on H340LAD.

over more shear strain; in all the experiments 7.5 % was redufor the first and second
load reversals. This material shows pronounced work handestagnation after the first
load reversal and after the second reversal the flow strems @wps. Apparently, the
deformationin the second stage of experiments 2 and 3 wasgmthat the work hardening
stagnation changed to softening of the material. None oHB#0LAD samples failed in
the cyclic shear experiments.

DP600 This material differs from the other materials due to thgdetransient effect af-

ter the load reversal, see Figure 4.8. The transition in ¢hrerse stroke from the elastic
to the plastic regime requires approximately 12 % sheainstiehe Bauschinger effect is
observed and is approximately 100 MPa in the test 3 with tigeekt pre-strain. Stagnation
of the work hardening was present in experiments 2 and 3, batvot observed in ex-
periment 1, since the transient hardening effect domirthee¢ocal stress—strain relation.

4.4.2 Cyclic shear under tension.

In this section a special class of cyclic experiments aregred. The sample is loaded
with cyclic shear, as in Section 4.4.1, and continued plaranstension is applied during
the cyclic shear. The mechanical properties in thveENTE BIAXIAL TESTER required
different settings in the controls of the actuators, depandn the tested material. This
leads to different ratios between the tensile and sheasloathe following experiments
for the 4 materials.
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Figure 4.8: Cyclic tests in simple shear on DP600.

DCO06 For DCO6 three tests were performed where the ratio betvessilé and shear de-
formation was changed, see Figure 4.9. In test 1 the cotivibof the shear deformation
was dominant. In the first stage of the experiment, both theileeand shear components
show an ordinary hardening curve. In stress space, Fig@(e)4the shear and tensile
stresses do not increase proportionally. A small kink issolesd, which is due to the dif-
ferent mechanical properties of the material in the elemtid plastic regime. The strain
path change leads the stress state linearly through thiicategion, Figure 4.9(c). In Fig-
ure 4.9(b) this is shown as a drop to a negative shear. Thietatriess increases with a
sudden jump of 120 MPa in stress Figure 4.9(a). Becauser#sssitate translates through
the elastic region, only a small increase in tensile andrssteain is observed during the
strain path change. As the material becomes plastic adiishiear stress increases further
(Figure 4.9(b)), but the tensile stress drops (Figure $)9(was observed that the speci-
men did not show any sign of necking until this point. Expeaith3 has the largest contri-
bution from the tensile deformation and shows a similardras experiment 1. However,
in experiment 3 the tensile stress does not drop after thmmgtath change. Additionally,
test 3 in Figure 4.9(b) shows that the elastic regime in tleashurve is relatively small.
The stress path, Figure 4.9(c), shows that the supposeéitdlakaviour is not linear during
the strain path change. For this experiment the stresscziate be called elastic or plastic.
Figure 4.9(a) and 4.9(b) show that at the end of experimetite8regular stress curve is
resumed and again dominated by the tensile deformationeriirpnt 2 falls in-between
tests 1 and 3 and has characteristics of both experiments.
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Figure 4.9: 3 different ratios of combined tension—simpless experiments on DCO6.

AA5182 For the aluminium two tests were performed, Figure 4.10elmggal, the results
of these experiments are similar to the results of DCO06. dtriking that the material fails
at the end of the load reversal in shear. The DC06 materidhatdened after this point.

H340LAD Figure 4.11 shows the results for the high strength steqieBiment 1 shows
the largest contribution to the shear deformation. In threegirain phase, 2 kinks are ob-
served in the stress path, Figure 4.11(c). The first kink isrdinearity in the shear stress
evolution, see also Figure 4.12. The second kink is theitrangrom elastic to plastic de-
formation. This behaviour is not dependent on the test eneip because the experiments
on the other materials do not show this behaviour. Experirden Figure 4.11(b) shows



46 Experiments

300
g 2 | & 100
< 200 \ L ?g
g g o
[%2] [%2]
3] —
7 100 5 2
3 & -100 1
0
0 0.05 0.1 0.15 0.2 -0.1 0 0.1 0.2 0.3
plastic tensile strain (-) plastic shear strain (-)
(a) The tensile stress—strain component. (b) The shear stress—strain component.
150 1 1
100 1
<
g sof -
@
3
50 1
®
2
» 50 i
-100 | 1
_150 7\ L L L L L L L L L i

-100 -50 0 50 100 150 200 250 300 350
tensile stress (MPa)

(c) The followed stress paths.

Figure 4.10: Combined tension—-simple shear experiment diifferent ratios on AA5182.

the same phenomenon, but at a higher stress and less predbouxperiment 3 does not
show the kink in the curve. Experiment 1 again shows a kinkhadlastic region right
after the load reversal. The kink in the pre-strain phaseiscatos, ~ 120 MPa and in

the reverse stroke aty ~ 150 MPa. In both situations the stress paths before and after
the kink are linear. Because the elastic behaviour of thalsietas not investigated in this
research, this phenomenon is further left out of consid@raExperiments 2 and 3 do not
show elastic behaviour after the load reversal. Both sfratiss show a gradual trend to the
negative shear stress. Experiment 1 does show some monbtodiening at the end of the
load reversal. Still, all the samples fail at the end of thedlceversal.
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Figure 4.11: Combined tension-simple shear experiment diifferent ratios on H340LAD.

4.4.3 Conclusion

The experiments with cyclic loading show the Bausching@aotfand the transient hard-
ening effect for all the materials. Especially, H340LAD wisoa strong sensitivity to load
reversals. Experiments with combined reversed shear uedsite loading show the me-
chanical behaviour when a strain path is prescribed thagmel is not used for the fitting
procedure of material models. It is a good option to validiagematerial models with these
tests. The WENTE BIAXIAL TESTER is especially suited for this research since it allows
for the accurate measurement of mechanical behaviour wydke loading.
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4.5 Orthogonal tests

In this section, experiments are presented in which theingadirection in strain space is
changed perpendicular to the initial loading directione TTRVENTE BIAXIAL TESTER can
load a specimen in simple shear and in plane strain tensi@hthese loading directions
were used to investigate the mechanical behaviour. As sisclin Chapter 1, the effect
of intermediate elastic unloading between 2 orthogonabmeftion paths was a debated
issue in the literature. Experiments with elastic unlogdine presented in Section 4.5.1.
Section 4.5.2 shows the results of similar orthogonal testsvithout intermediate elastic
unloading. The comparison of the results allows for a casioluon this debate. Further-
more, Section 4.5.2 shows the results of experiments wabugl strain path changes. An
impression of the yield surface in stress space was obtiaetthese experiments.

4.5.1 Cross-hardening effect

Figure 4.13 shows the results of the orthogonal test on DA @vthe material is elasti-
cally unloaded after the tensile deformation. This hapmdren equivalent plastic strain
of 12%. At the peak of the tensile curve, the actuator dispteent is terminated. After
that, a small time interval is implemented, after which #esile stress is decreased to zero
by the actuator displacement. During the time interval thelening due to the strain rate
disappears, hence the yield stress drops. This makes thatabhine releases some of its
elastic deformation, and the tensile strain in the specimemases, see also Section 3.3.
This effect causes an additional plastic strain of 1.5 % astiess drop in this interval of
approximately 40 MPa. After that the tensile stress is cetady released, and the shear
deformation is applied. Clearly visible is the overshodtwespect to the monotonic sim-
ple shear curve, at its highest point of 35 MPa. As the deftonaontinues the shear
stress remains constant until it equals the stress4at 0.26) in the monotonic test. From
there on the regular hardening path is followed.

Additionally, an experiment with a strain rate change andghogonal strain path
change was performed on DCO06. This experiment was perfotmnsidow the correlation
between a strain path change and a strain rate change. kexihésiment, the plane strain
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Figure 4.13: Orthogonal test with elastic unloading aftertensile deformation.
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Figure 4.14: Orthogonal test with elastic unloading after tensile deformation. The shear de-
formation is applied at a lower rate.

deformation was applied @tq = 1- 1072 s~! and the shear deformation was applied at
éeq=5-10"*571. The result of this test is depicted in Figure 4.14. Althotighamount
of pre-strain is smaller in this experiment, a similar obhexst as in Figure 4.13 is observed.
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Figure 4.15: The shear curves in the orthogonal experinveititintermediate elastic unloading.
Different strain rates are applied to investigate the gatale difference.

The shear curve in this graph is measureéigt= 1 - 10725~ 1. Because the strain rate in
the experimentis lower, the shear stress is lower compaithe {presented reference curve.
Qualitatively, however, the curves do correspond. FroméRperiment it is concluded that
a change in strain rate does not effect the strain path cremmgitivity in DCO6.

For modelling purposes it is interesting to know at whatsstilevel the material enters
the plastic regime. When the evolution of the shear stre$sgares 4.13 and 4.14 are
observed, it seems as if the stress state is directly in érgiplregime. However, due to
the definition of the equivalent plastic strain, Section #8re is an accumulation of noise
and the strain increases. A better representation for thesament of the elastic—plastic
transition is given in Figure 4.15 where the shear stresbttagl as a function of the shear
strain. This figure shows that the actual elastic—plasdicdition is close to the maximum
of the overshoot. This is independent of the strain rate tmettie shear deformation.

In Figure 4.16 the results of the orthogonal test on alummméwe depicted. In contrast
with the mild steel it does not show the cross-hardeningeffa simple shear deformation,
the stress state slowly converges towards the monotonés sheve.

The experiments with orthogonal strain path changes on H8B0are depicted in
Figure 4.17. The overshoot in shear stress after the statinghange is 20 MPa compared
to the reference shear curve. It is noticed that the ovetstnagy also be related to the
abrupt elastic—plastic transition, which is clearly shawthe reference hardening curve.
The monotonic shear curve shows a peak after which it dropspgiateau and only then
starts to harden. Furthermore, the shear stress does raityec@nverge to the reference
shear curve, which is emphasised by the different hardemieg that are observed for the
reference curve and for the shear stress in the experimémiawiorthogonal strain path
change.

The results of the experiments with an orthogonal straif gheitnge on DP600 are
depicted in Figure 4.18. The characteristic overshoot @aslstress is not observed in
this experiment. The shear stress converges graduallyetmtimotonic shear curve. It
is noticed that the pre-strain in the tensile direction latireely small in this experiment
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Figure 4.16: Orthogonal test on aluminium.

(7%). The transition from the elastic to the plastic regieguires approximately 2.5%
equivalent plastic strain. When compared to the cyclic arpents, the elastic—plastic
transition is “sharper” in an orthogonal strain path chatigen in a reversed strain path
change. The dislocations piled up at the LEDS are releastgeateformation is reversed,
but in an orthogonal strain path change, newly activatgdmtines carry the deformation.
This explains that the elastic—plastic transition is mdmaupt in the orthogonal strain path
change than in reverse loading.

4.5.2 Tracing the yield surface

The goal of this section is to investigate whether it is passio determine the shape of
the yield surface by applying a sharp strain path change frenplane strain tension de-
formation to the simple shear deformation. As the strede staves from tension to shear,
and the materials remains plastically loaded, the stress Bas to follow the —potentially
evolving— yield surface. Plastic deformation during thengition means that plastic strain
is accumulated and that in turn implies hardening of the rieteThis effect would cause
the stress state to drift away from the initial yield surfabape just before the strain path
change. Experiments were performed with orthogonal sfpath changes in which the
strain path change is varied from a very sharp change to aigrattain path change. The
accumulated strain in the strain path change would be refléctthe changing stress paths.
The algorithm to control the stiffness of the machine, se#i®®e 3.5, was used to prescribe
the strain paths. Different settings of the parametersraggayed in this algorithm for the
compensation of the stiffness of the machine to descriaingbaths with different degrees
of sharpness. DC06 and AA5182 were used to investigate theepd and the material
behaviour.
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Figure 4.18: Experiment with an orthogonal strain path geaon DP600.

DCO06 Figure 4.19 shows the results for mild steefter the tensile deformation the
actuator movement is stopped and a small decrease in tesisles is observed. This

1The results for DCO6 in this work are based on van Riel and esnRbogaard (2007)
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happens within a time interval of 20s. For test 1 to 5 the aationtrol of the stiffness
is used to steer the strain path, test 6 is done without anyeasation. The smoothness
of the change of the strain path is adapted, by allowing mensile strain to develop
during the shear phase, see Figure 4.19(a). For DCO6 6 afiffexperiments have been
performed with different transitions from the tensile te 8hear deformation. Test 1 shows
the strongest strain path change and test 6 shows the mdsiagsirain path change. The
tests 2-5 have intermediate transition modes. It is notatlttie depicted strains are not
plastic strains, but total strains. Here, the behaviouhefrhachine is clearly reflected in
the experimental results. The strain paths are varied barth@unt of extra tensile strain
from the onset of shear deformation, from 0.5% to 6.5 % tersiilain in the smoothest
path.

The stresses observed in these experiments are depictegline B.19(b) and 4.19(c).
The vertical axes show the stresses as a function of theagquohplastic strain. For a sharp
strain path change the shear stress clearly shows an oe¢tshing the strain path change
with respect to the monotonic simple shear test. The stesgsonse is similar to a strain
path change with elastic unloading, as presented in Sedtled. A slight difference is
observed at the onset of shear deformation. In the expetividnintermediate elastic un-
loading (Figure 4.13), the stress increases with an elegtdo the maximum shear stress,
whereas in the experiment with a continuous strain pathghgahe stress increases more
gradually. This is due to the strain that is accumulatedérstirear and tensile deformation
and patrtially because the noise accumulation appears iextperiments with continuous
strain path changes.

For the test where the strain path change gradually evoteas fensile to shear, the
shear stress slowly converges to the monotonic simple sesarThe intermediate curves
(experiments 2-5) show responses in between these twonedre The same holds for
the stresses in the tensile direction. The test with theuglskrain path change shows
a slowly decreasing tensile stress. The tests with moreosdieain path changes show a
rapid decrease in tensile stress. After an additional Ch&&arsstrain (Figure 4.19(c)) the
effect of the strain path change is no longer observed. Foraoth transition, the tensile
stress converges to a zero stress level, but this requires strain.  Figure 4.20 shows
the stress curves of the 6 orthogonal tests in stress sp&ee2ds delay after the tensile
test manifests itself here by the peak to the right in theileedsrection, after which shear
deformation continues. Test 6 is the one curve that devidezsly from the other five
experiments; during the transition from tensile to simgiear a little hardening can be
observed in this test. The other five tests show almost aimgistress paths. The inset
shows a zoom of the upper left corner of the stress spaces I€stare depicted here. This
shows that the tests 1 and 2 have a small decrease in shesrwstrieh corresponds with
the softening after the overshootin Figure 4.19(c).

It is remarkable to see that despite the significant incr@agéastic strain, the stress
paths in stress space show similar results for tests 1-bi(Ei4.20). Figure 4.21 shows the
results of the evolution of tensile strains and the tensitss for tests 1 and 6. Test 1 shows
an increase of tensile strain during the strain path chahgpmroximately 1 %, but test 5
increases by 5 %. Itis noticed that this strain is accumdlaigy during the transition from
tensile to simple shear deformation. The coinciding stpeghs can be explained by the
low hardening rate at the used pre-strains. For similar ex@ats with lower pre-strains
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Figure 4.19: The experiments on DCO06 with continuous ordhad strain path changes.
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Figure 4.20: Stress paths for the DC06 material. The insetvsta zoom of the stress path
indicating the place the overshoot in shear stress occurs.
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Figure 4.21: The evolution of stress and strain responsteinrthogonal tests. The thick lines
represent the tensile stresses for tests 1 and 6. The tles l@present the tensile
strains, from tests 1 to 6.

it is expected that the stress paths would show more spreaxce; an impression of the
shape of the yield locus can be obtained, while some plastimsgs still permissible.
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Aluminium  For AA5182 similar experiments were performed, see Figuea 4still, the
strain paths change from very strict (test 1) to graduat @gsFigure 4.22(a) shows that
in tests 1-3 with increasing shear deformation, the terssilein decreases. This happens
only after the strain path change and at higher shear strails®, the tensile stresses in
these tests increase to a level of approximatgly = 20 MPa. This is due to the shear
deformation that induces a contraction of the material étémsile direction which in turn
leads to a tensile stress. The decreasing tensile straimykhrear is known as the pointing
effect.

The stress—strain curves show that the sharper the chanlgéasmation direction, the
more shear stress is required for the transition. Like D@I6AA5182 it is concluded that
the change of strain path is independent of elastic unlgadihis is proven by test 1 and
the comparison with the test with intermediate unloadingigure 4.16.

The stress paths of these experiments are shown in Figuse fieats 1 and 2 have a
good correspondence, but tests 3 and 4 show a trend awaytimimitial stress path. This
could be due to the higher hardening rate of aluminium attitsénslevel of the strain path
change. Only a small increase of accumulated plastic strairid result in a higher shear
stress. For tracing the yield surface of this materialstd8stnd 4 cannot be used. For further
experiments where the shape of the yield locus is examihedsttain path change should
“use” as little accumulated plastic strain as possible artth be as sharp as possible.

The influence of pre-strain

In this section it is experimentally investigated whethee famount of pre-strain in the
plane strain tension phase of the experiment influencesttbesspath during the loading
transition. For all the materials this was done for 3 or 4 lewé pre-strain. In the former
section it was argued that the transition from plane striisibn to simple shear does not
necessarily have to be sharp to reveal the shape of the yidlts. Therefore, the settings
for the strain transition as used in test 2 for DC06 were appli

The set of orthogonal experiments on DCO6 is expanded witleréxents with a test
with a higher pre-strain, Figure 4.20. The shape of the spath does not seem to change,
only the stresses are higher. This is also true for the tebtaviower pre-strain. However,
at the end of the strain path change it can be seen that ties gtath bends towards shear
while there is still a tensile stress present. This is moréeat at the experiment where the
pre-strain is small, the stress state does not seem to ftilewield surface but translates
towards the shear state in a linear fashion. At lower prairstrthe hardening rate is still
relatively high, explaining the deviation from the yieldriace. Hence, tests with a low
pre-strain give an indeterminate view of the yield surfagehigher pre-strains the shape
of the stress paths are similar and hence give a better isipresf the yield surface.

For aluminium it was observed that the orthogonal straih patnges with intermedi-
ate unloading (Figure 4.25) are dependent on the amouneedtpain. The hardening rate
at elevated pre-strains drops, which is also reflected indbelts. The experiments with
higher pre-strains show a trend that is equal to the initipleeiments. Furthermore, the
experiments with a lower pre-strain show a deviating treHére, the more pronounced
increase in shear stress shows the influence of the highdeihiag rate.

The experiments on H340LAD, Figure 4.26, and on DP600, Eigu27, show similar
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Figure 4.22: The orthogonal test without elastic unloadorgAA5182.
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Figure 4.23: Stress paths for AA5182.
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Figure 4.24: Stress paths for DCO6.

trends as in AA5182. Increasing or decreasing the prersti@és not influence the shape
of the stress paths, only the size of it.
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Figure 4.25: Stress paths for AA5182.
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Figure 4.26: Stress paths for H340LAD.

Yield surface shape

The presented experiments in this section show a croseseftthe yield surface through
the plane strain tension—simple shear plane. To compargeliesurfaces from the dif-
ferent materials with each other, the stress paths are isadavith respect to the tensile
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Figure 4.27: Stress paths for DP600.

stresses at the start of the strain path change. The expesithat have the largest amount
of pre-strain were selected to exclude hardening duringtifaén path change. Figure 4.28
shows the results of the normalised stress paths for the drimlat There is a clear dis-
tinction between the aluminium and the other metals, esfigéit the onset of shearing. It
is noticed that aluminium shows a small kink at the start efgtrain path change, which
is reproducible (see Figure 4.25), but the stress path wailshore in line with the other
metals if that kink was not present. The ratio of shear stogss plane strain tension is
smallest for aluminium (0.53) and highest for the H340LAD6(®. DP600 and DCO6 ini-
tially follow the same stress path as H340LAD, but separatBuvay. For the Von Mises
yield criterion this ratio equals 0.50. All of these matésishow a higher value than the
\Von Mises ratio, indicating that a classical isotropic hearithg model based on Von Mises
would not be accurate to simulate these experiments.

4.6 Conclusion

With the experiments presented in this chapter it is suéegshown that the WENTE
BIAXIAL TESTER can be used for measuring the mechanical behaviour of stetat dur-
ing strain path changes. The possibility of th&/ ENTE BIAXIAL TESTER to control 2 axis
of deformation, plane strain tension and simple shear, madssible to measure the stress
and strain path in experiments with changing strain paths.ififluences of anisotropy and
strain rate can be measured with this equipment. To makeaeccomparisons between
different experiments based on equivalent plastic strais,recommended to improve its
calculation, since now noise in the measurement is accuetlia the definition of equiv-
alent plastic strain.
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Figure 4.28: Normalized stress paths in stress space.

The measurements on DC06 showed that this material is $yreegsitive to strain
path changes. Experiments on this material with orthogstnain path changes, with and
without intermediate elastic unloading, showed that tlissthardening effect is indepen-
dent of the application of intermediate unloading. Howetleg overshoot in stress in the
experiment without unloading has more accumulated strathe strain path change and
hence, the stress peak is shifted slightly on the strain dixess observed that the elastic—
plastic transition in the experiment with intermediatesitaunloading is higher than the
reference monotonic curve for the measured amount of plastiin. The enlarged elastic
domain contributes more to the overshoot than the hardéhatgs observed subsequently.

The continuous orthogonal experiments on mild steel anchiaium show that if the
strain path change is sufficiently sharp, the yield surfeae loe observed in the stress
path of the experiments. The build-up of accumulated @astiain needs to be small
enough and the hardening rate should be small in order netiate from the yield surface.
Finally, the yield surfaces that were detected show a treraydrom the Von Mises yield
locus, indicating that the classical isotropic hardeniragerial model with a Von Mises
yield surface cannot be applied for these experiments.

The mechanical behaviour presented in this chapter prevadgood basis to fit the
(strain path dependent) material models. In Chapter 6 ihisve whether the material
models fitted to these experiments indeed give a bettergiredof full simulation process.
The next chapter discusses the material models and thésres$tihe fitting procedure.






5. Material models for non-proportional
loading

In the previous chapter, the influence of the strain path emtkchanical behaviour was
examined. It showed that both the amount and the directiatefifrmation determine the
stress—strain relation.

This chapter discusses the material models that are usezstwilde non-proportional
deformation. These models make extensive use of diffaeatjuations to describe the
state variables that determine the external stress—diedinviour. To this end, a frame-
work is presented that is used to solve the equations casmtilyr Classical isotropic and
kinematic hardening is used to show the concept. The coegplied to two material
models that are able to describe strain path dependentiaidtehaviour. The Teodosiu &
Hu model is a physically based model that describes the #onlof the micro-structure
of the material, and extracts the stress—strain behaviour it. The second model is the
Levkovitch model, that describes the different aspectsrafrspath dependency via differ-
ent superimposed models. A characteristic feature in tluidehis the changing shape of
the yield surface during deformation. The performance efdifferent models is assessed
by the results of the fitting procedure on DC06. This matasalelected as a test case
material, since it shows the most distinct strain path $ieedbehaviour.

The experiments on DCO6 have shown that some orthogonai giaéh changes can
be accurately described by classical material models. Jcridiinate between the strain
paths that induce typical strain path sensitive behavindrthose that do not, a strain path
change indicator is proposed. Implemented in a FE-codepplis the engineer with a
tool to assess the strain path changes in the material.

5.1 Classical phenomenological material models

This section describes material models that are frequerstyd in sheet metal forming
simulations. A distinction is made between 2D and 3D malteriadels. In the 3D-case, a
full 3 -dimensional state is describetl;= [0x, 0y, 02, 0xy, 0yz, oxz]T. In the plane stress
models it is assumed that = 0, and all components in thedirection are eliminated:
o = [ox.0y. axy]T. Firstly, the anisotropic Hill'48 and Vegter yield critarare discussed.
The Hil’'48 model can be seen as an extension of the Von Misedainand describes the
full 3 dimensional stress state. Three mechanical expeitsrae required to determine the
material parameters. The Vegter criterion on the other easldeveloped especially for
simulations of sheet metal and describes the plane strags $t requires 10 mechanical
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tests, but offers greater flexibility than the Hill'48 crii@n. In the following subsection it
is explained how a plane stress yield criterion can be imm@ted in a material model that
describes the full 3 -dimensional stress state. This erdwathe application of plane stress
yield criteria. Next, the description for isotropic and &matic hardening is presented.
Kinematic hardening describes the shift of the yield swefdwough stress space, based
on the direction of plastic flow. For efficiency, the materi@del is generally reduced to
the plane stress situations. This allows a reduction of &tiwns in the calculations. It is
explained that in the case of kinematic hardening, an insterxy with the 3D situation
exists. An algorithm is presented such that the consisteuseserved.

5.1.1 Yield criteria

The yield criterion describes the stress state in which ari@tchanges from reversible,
elastic mechanical behaviour to irreversible, plasticavébur. In this work the focus is
on the Hill'48 and Vegter yield criteria. Both models assuim&t anisotropy is symmetric
around the rolling, transverse and thickness directiortse Hill'48 is used because it is
widely applied and it has a simple mathematical descriptibhe Vegter model is more
complex, but offers more freedom for accurate descriptfdgh®initial yielding behaviour.

Hill yield criterion  The Hill'48 criterion is given in the format of (2.1):
¢ = F(0y —0;)* +G(0; —0x)* + H(0ox —0y)? +2LO’§Z +2Mo?2, +2N0§y —x% (5.1)

The values ofF', G, H, L, M and N describe the anisotropy of the material. The value
of x can be scaled with the anisotropy parameters. In this woek /G + Ho; such
that the uniaxial flow stress in-direction equals the flow stress. It is computationally
convenient to write the yield function as a homogeneoustfonof the first degree. Also
introduced is the tens with the material parameters (De Borst and Feenstra, 1990):

¢ =+vo:M:o —o; (5.2)

The tensoP can be represented in matrix format:

G+H -H -G 0 0 0 ox
H F+H —F 0 0 0 oy
1 G -F F+G 0 0 0 . o;
M=%7"] o 0 0 2N o o | Wthiek=4,0
0 0 0 0 2M 0 Ore
0 0 o o0 o0 2L Oyz

(5.3)

For the set of parameters whefe= G = H = 1 andL = M = N = 3 the Von Mises
yield criterion is obtained.

This criterion can be easily converted to a plane stress modeavhere the thickness
stress and the shear stresses out of the plane of the shée{are= 0,; = oy, = 0).
Hence Equation (5.1) reduces to:

¢ = \/(G + H)o2 + (H + F)o? —2Hoy0y + 2No2, — /G + Hor  (5.4)
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Figure 5.1: The shape of the yield locus for different valok®y.

The R-values that are determined in tensile tests can be useddoee the parameters
of the plane stress criterion:

2Ry
F = ———— 55
Roo (1 + Ro) (55)
2
G = 5.6
1+ Ry (56
H = 2-G (5.7)

2R 1) (R R
_ QR4+ 1) (Roo + Ro) (5.8)
Roo (1 + Rog)
Finally, Figure 5.1 shows the influence of different valuasR, in plane stress space. With
higher values for th&k-value, the yield surface elongates unrealistically aliweg, = o,
axis.

Vegter criterion The Vegter yield function (Vegter and van den Boogaard, 2@&6
scribes a yield function based on interpolation betweensorea points on the yield sur-
face. The yield function is described in the principal drggace and uses Bezier interpo-
lation to connect the measured yield stresses in equiddigptane strain tension, uniaxial
tensile and shear tests to define a yield locus, see alsoe-fga(a). This leads to four
stress points in the region whesg > o,. Stress situations wherg < o, can be deter-
mined if the sample is rotated 99°. Compressive stresses were not measured, but were
covered by the assumption that the material initially belsdadentically in tension and in
compression, hence the yield locus is point symmetric addli@ origin.

In the experiments not only the yield stress was measurddilbo the strain and its
direction were determined. Drucker’s postulate statesthigaplastic flow is perpendicular
to the yield surface and this is applied to the measuredsttaidetermine the local tangent
of the yield surface. With the stress points and their tatgy@vailable, second order Bezier
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Figure 5.2: The construction of the Vegter yield criterion.

curves can be constructed between the stress points, sge Big(b). A stress state in the
2 -dimensional stress space is represented by a vector:

> )01
o= %02} (5.9)
which is used in the definition of the stress state:
o= ? [5’1' + 28 (5}, - 51') + B> (51' +4d; — 25’h)] B €10,1] (5.10)
f

The hinge pointy, is defined by the intersection of the tangents of the 2 meddiow
stressesd; anda; . The yield surface is &' continuous yield function. The term between
square brackets indicates the position on the yield sunacéhe scalai and the ratio
oeq/0r determines the magnitude of the stresses. This definitiosésl in the traditional
yield criterion setting, see Equation (2.1)

Anisotropy of the sheet is captured by using the flow stres§éle experiments at
different angles with respect to the rolling direction. Tif@wv stresses at intermediate
angles are defined by a harmonic interpolation function.

For the implementation of this model, experiments in thiiegations (°, 45° and90°)
are required to determine the 17 material parameters. Aldicagion was presented to
decrease the number of material parameters and the numtestaf (Vegteet al,, 2009).
This adds to the usability of the model.

5.1.2 Integrating a plane stress yield criterion in a 3D mate  rial model.

For sheet metal forming simulations, it is normally assurtred the blank is in a plane
stress state. Simulations of sheet metal forming procemsesensitive to the definition
of the yield criterion, and much effort has been put into theadopment of accurate yield
descriptions. Usually, yield criteria for sheet forming atefined in 2D (Banabiet al,,
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2004; Vegter and van den Boogaard, 2006), which allows a sionple definition than
in three dimensions. However, hardening models are inicrgigscomplex and take into
account the full 3D stress state. Additionally, more adeahelementsg.g.solid shells),
also require a full 3D stress state. Hence, a method is redjtidr incorporate the plane
stress yield criteria in a 3D material model. To this end, gtress in thickness direction
and the shear stress in the plane of the sheet need to be anatag in the definition of
the equivalent stress. Based on the assumption that ttéingdbehaviour is independent
of hydrostatic stress, a general description of a planesifield criterion in a 3D material
model is presented.

The general definition of a yield criterion is given in Eqoati(2.1) and incorporates
the definition of the equivalent stress. In the case of a piress material model the
equivalent stress is given by:

oty = 0&(0x.0y.0xy) (5.11)

Obviously,o@é is not a function ob;, oy, ando,,. The goal is to eliminate these out-of-
plane stresses from the stress vector in the 3D situatiothdtvi changing the value of the
equivalent stress, a hydrostatic stress with the magnaftittee stress in-direction can be
added such that the third componenitP equals 0:

Ox Ox 0z
oy oy o
=)0z __3p_ )0z _Joz (5.12)
Oyz Oyz 0
Ozx Ozx 0
Oxy Oxy 0

The shear stresses in regular yield criteria are decoupetthe normal stresses and from
the other shear stresses. This indicates that the contribfrom o, and oy, can be
defined independently, based on a arbitrary 3D vyield cateriThe general description of
a plane stress yield criterion in a 3D stress state then reads

Ox —O¢
ag’(? = 02,? (aé’g P9, 0%z, ayz) with P =10,—-0; (5.13)
Oxy

in which o&? is the plane stress definition of the yield criterion ayﬁf is a 3D yield
criterion from which only the shear contributions are used.

For the use of Equation (5.13) in a material model, the déviea of 5, with respect
to the stresses are required. Because all stresses exa@ptexplicitly calculated in Equa-
tion (5.13), these derivatives are easily determined. Enwative with respect te, needs
to be determined in some other way, because this compongat explicitly included in
the definition ofog(?. From the assumption that the yield criterion is indepetndéithe

hydrostatic stress, it follows that the derivative of dﬁ@ is in the deviatoric plane. Hence,

3D 3D 3D
99 :_(a_¢ L0 ) (5.14)

dox doy,

P 3D 3D 3D
00 doy do do;
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The new yield criterion is generic with respect to the apgplidane stress yield criterion
and shows the same convergence in the return mapping algoais the plane stress yield
criterion.

To show the concept of a plane stress yield criterion in a 3dyfunction, the Von
Mises criterion is used. The general description of thigdyfienction for three dimensions
description is:

o) = /o2 + 07 + 02 — 0x0y — 0,0; — 0x0; + 302, + 307, + 302, (5.15)

When a plane stress situation is described, the yield mmteeduces to:

Ufhsn (o) = \/03 + 0y2 —0x0y + 30,%y (5.16)

The plane stress definition is implemented in the 3D yieldfiam according Equation (5.13):

oo (0%°) = \/0\‘,),\5,, 2 (0x — 02,0y —0z,00y) + 302, + 302, (5.17)

Now, the desired plane stress yield condition repla¢gssuch that a full 3D yield criterion
is obtained based on the chosen plane stress yield criterion

5.1.3 Isotropic and kinematic hardening models.

The evolution of the flow stress during deformation can beelled either phenomenolog-
ically, or based on the evolution of the micro-structureisTatter class of material models
takes into account dislocation storage, and often usespiadtate variables to describe the
history of deformation (van Liempt, 1994; Rotetsal,, 2000; Nes and Marthinsen, 2002).
Here, we limit ourselves to phenomenological material nmdeecause of their ease of
use and their efficiency in FE simulations. The general digtsen of a yield function is
presented in Equation (2.1).
An often used isotropic hardening law is the Swift law:

ot = C (e + go)" (5.18)

Itrequires only 3 parameters and can easily be fitted to iahignsile test. The Bauschinger
effect, observed in cyclic tests (Section 4.4), cannot bdetfied with isotropic hardening
models. To this end kinematic hardening models were deeeldipat shift the yield sur-
face in stress space, while the size of the yield surface iren@nstant. Upon a load
reversal, the material yields earlier compared to theagicrmodel, hereby describing the
Bauschinger effect in a load reversal. The direction of tiift & either in the direction of
the plastic flow (Prager assumption) or in the direction efslress rate (Ziegler assump-
tion). If a Von Mises yield criterion is used these direct@mne equal. The yield surface can
only move in the deviatoric plane. In kinematic hardeningleds the history of the stress
path is stored in the back stress and it is therefore negettssgirthe evolution equations of
this group are rate-type equations. The Armstrong—Frekikimematic hardening is often
used to describe the Bauschinger effect:

@ =1 (Aka—¢ — 4 oz) (5.19)
do
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Ay describes the hardening rate. The evolution of the backssisedependent on the
amount of pre-strain via the second term on the right hanel sicthe material parameter
A controls the contribution of the pre-strain. It allows fagradual increase in flow stress
after the load reversal and mimics the the transient handegiffect after a load reversal.
The direction of the evolution is determined by the direttdd plastic flowd¢/do. This
model can be improved by simply defining a set of these lawsiakinematic hardening
law (Chaboche, 1991; Chwet al, 2002):

a:Zi( @g—f—A(a') (5.20)

i=1

It was demonstrated that this model gives accurate resulgslbading history with 10 load
reversals (Chaboche, 1991).

The kinematic hardening model presented here can destrbgansient hardening
effect in cyclic loading, but not the work hardening stagmmat To constrain the evolution
of the back stress after a load reversal, and hereby mimiwthk hardening stagnation,
a bounding surface can be introduced into the model. It @#in the direction of the
plastic flow, but at a lower rate than the back stress. Afterad reversal, the back stress is
constrained by the bounding surface, but after some moitdeformation, the bounding
surface again develops in the current deformation diractibhis allows the back stress
to evolve further (Huétink, 1991; Yoshida and Uemori, 20PQ03). These models are
not used in this work, but may be valuable in simulations afcpsses dominated by load
reversals.

5.1.4 Kinematic hardening in the plane stress formulation

In sheet metal forming simulations, the stress developnmetite thickness direction is
normally ignored because the stress in this direction is@pmately zero. In full 3-
dimensional material models, the strain in the thicknessctibn is iteratively changed
to find the plane stress situation. By implementing the plsiness boundary condition
directly in the material model, the iterations on the plaimess conditions are avoided, re-
sulting in a time efficient algorithm compared to the full 3l@@ithm. Another reason for
the use of plane stress material models is that yield citere developed specifically for
plane stress situations, since this is less complicateddeeeloping a yield criterion in 3D.
A plane stress material model is derived from a 3D materiad@hby simply eliminating
the thickness components from the algorithm. In this sadtiis investigated whether such
a conversion from the 3D material model to the plane stresenmhmodel is consisteht
Classical material models are based on (combinationsatfpisic and kinematic harden-
ing laws. A 3D material model with only isotropic hardenirande consistently converted
to a plane stress algorithm, by eliminating thdirection and adapting the elasticity-matrix,
as is illustrated in many textbooks (Chen, 1994; Zienkiaveind Taylor, 2005). For kine-
matic hardening models, however, it is shown that the theskrdirection cannot be simply
eliminated. The back stress in thalirection needs to be taken into account to give consis-
tent results. Even for yield criteria that are only defineglisne stress, a compensation is

1This work was presented in van Riel and van den Boogaard §2007
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required. It is noted that the yield functions do not needd@tiapted themselves, because
the compensation acts on the return mapping algorithni.itsel

Figure 5.3 illustrates the difference between the a plamssiand 3D material model.
The direction of plastic flow in a uniaxial test in a 3D maténedel is oriented within the
deviatoric plane. The plastic flow in a uniaxial tensile lmaghas components in the plane
of the sheet andy), but also in the thickness) direction (Figure 5.3(a)). A plane stress
material model employs the yield surface without a compoirethe thickness direction,
as it is represented in Figure 5.3(b). The direction of plafddw lies within the plane
of plane stress and does not have a component in-flieection. The major difference
between a plane stress algorithm and a 3D material modetimitsingz-component in
the plane stress material model.

A 3D material model with isotropic hardening is consistgrtinverted to a plane stress
algorithm by eliminating the thickness components fromdlgorithm. The missing-
components do not affect the overall stress state or theetgemce of the material model.
This makes sense because isotropic hardening is indepeoidtiie direction of plastic
flow. Kinematic hardening, however, is dependent on thectdoe of plastic flow. A com-
parison is presented in Figure 5.4 between a kinematic hargenodel based on the plane
stress algorithm and a 3D material model that is iteratigelyed for the plane stress situ-
ation. Again, the uniaxial tensile test (indirection) is employed with the Von Mises yield
criterion. Figure 5.4(b) shows the consequence of therdiffigplastic flow directions. The
yield surface in the 3D material model shifts in stress sgagallel to thex-axis, hereby
preserving the uniaxial tensile stress state. The backsseeolution in the 3D material
model includes a component in thedirection. But because the plane stress situation is
required:

0z = é‘z +oa, =0 - ;= —ay, (521)

In other words a hydrostatic stress is addedl snich that, = —«, ando, = 0. The stress
state moves along the hydrostatic axis to the plane of theepdtress state. The position
of the stress state on the yield surface remains at the ahistxess point, because only
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(a) The deviatoric plane in 3D stress (b) The plane stress situation.
space.

Figure 5.3: The Von Mises yield surface and the directionlatic flow in a uniaxial tensile test
in the x-direction.



5.1 Classical phenomenological material models 71

a change in the hydrostatic stress is applied. For the éwalaf the back stress in the
plane stress algorithm, the representation in Figure bi8@pplied. Because there are no
out-of-plane components, there is also no evolution oksts in the thickness direction
(0; = ¢, = a, = 0). The direction of plastic flow points “down” in Figure 5.3(tand
thus the yield surface shifts in that direction. At the sameef the uniaxial stress state
requires that, = 0, leading to a shift of the stress state over the yield surtiatiee plane
strain pointin Figure 5.4(b). The larger contribution ofingstatic stress in the 3D material
model leads to a higher tensile stress compared to the pli@ss algorithm.

To arrive at a situation where the plane stress and 3D afgo#ire consistend;, andZ,
have to be taken into account in the plane stress algorithynmduding the effective stress
£, in the definition of the equivalent stress, in the directidmplastic flow, a consistent
conversion is obtained:

¢ _ 99
do  do
The value of; is easily determined becausevolves according to the direction of plastic

flow, which lies in the deviatoric plane. Heneejs also deviatoric and thus together with
Equation (5.21) we obtain:

Oeq = Oeq (é‘xsé‘ysé‘z’é‘xy) and

(é‘xaé‘yaé‘z,é‘xy) (5.22)

@ =—(ta) =  G=-w=(u+to) (5.23)

The rest of the material model remains the same, only Equa(®.22) and (5.23) need to
be implemented. It is emphasised thiatainda, are only used to determine the consistent
values in thex- andy-directions for§ anddg/do .

It is recognised that the yield criteria defined for sheetahftrming are often plane
stress models that do not include the requirebmponent. These models show the same
deviation in the stress evolution and therefore requireattieptation. Because the yield
criterion is independent of hydrostatic pressure, the otktinom Section 5.1.2 can be
applied. Equation (5.22) can be used in plane stress yidktiaerby eliminating the:,
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(a) Stresses as a function of the equivalent plagic The shift of the yield surfaces for the two algo-
strain. rithms.

Figure 5.4: The resulting stresses in a uniaxial test angakéions in stress space.
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component. Again, this is done by adding a hydrostatic stt@$he normal components,
such that the-component equals O:

é‘x B §Z é‘x - é‘z a¢ a¢
C = ?Zz : gj d C* = gyé__ygz = Oeq = O¢q (C*) s % = % (C*)
{x ¥
g (5.24)

This compensation allows for a consistent conversion frioen3D material model to the
plane stress model, even with a plane stress yield function.

5.2 Generic return mapping algorithm

For the implementation of a material model in a Finite Elehwade, a stress update al-
gorithm and the consistent stiffness are required. In tbitien a generic algorithm is
presented that is used both for the stress update and tdateltie stiffness matrix. This
model describes isotropic and kinematic hardening.

5.2.1 Stress update

This section describes the algorithm to determine thestfier a strain increment. The
algorithm maps the stress back to the yield surface, eXplits name:return mapping
algorithm A set of three differential equations will be used to deieerthe evolution of

three state variables:
Ao

{AV} = { Aa (5.25)
AL
The equations are solved with the Euler-backward proceddence, the equations are
evaluated with the state variables at the end of the load Sibp general update for the
state variables in this procedure is evaluate¥as; = V, + AV, wheren denotes the
number of the load step. The yield criterion is evaluatecgkimt of the effective stress
and the equivalent plastic strain at the end of the load step:

¢ = 0eq(§ns1) — 01 (geayir) (5.26)

Through discretisation of Equation (2.5), the plasticiati@acrement depends on the deriva-
tive of the yield surface at the end of the load step:

AeP = A2 20 (5.27)
do n+1

The stress increment is evaluated by Hooke’s law:
Ag =E: Ae® (5.28)
The externally applied strain is split in to an elastic pad a plastic part:

Ae = Ae® 4 AeP (5.29)
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Equations (5.28) and (5.27) are combined with (5.29) to g¢fisefollowing evolution in
terms of strain:
d¢

Ae =E'Ae + AL =
o

(5.30)

n+1

Kinematic hardening, to describe cyclic behaviour, isuleld via the Armstrong—Frederick
law from (5.19):

a
Ao = (Ak 9% - A|ocn+1) AA (5.31)
0 ln+1
To solve the above set of equations, they are cast in to a siete® residual functions:
ad
Ro, = Ae—E Ao —AA % (5.32)
do n+1
el
Ry = —A '+ A4ANAa— A" A A ey, + % AL (5.33)
00 |41

R is adapted with a minus sign to obtain symmetry in the Jacoliae 3 residual func-
tions are combined tR = [Ro.Ra. R¢]T. All the evolution equations are met when
R = 0, but the functions are nonlinear and require an iteraticegdure to findv™?*, A
Taylor series expansion is used, which is evaluated as:

R(AVT) =0 = R(AV')+ ;)‘I; :dV? (5.35)
. R\ .
1 — | . i

= dV' = ( avz‘) :R(AV') (5.36)

The derivative of the residual functions are used to consthe Jacobian of this set of
equations. Note that that because= ¢ — «, the derivatives of the yield function can be
interchanged easily:

dp _dp 09 q Pp ¢ ¢ %9

b0 3 dx o 902 T 3¢ de | d0da

(5.37)

These properties are used to determine the Jacobian oftthEtke residual functions:

i 92¢ 9%¢ d¢
E'+AL— AL —
+ 902 n+1 00 0ot n+1 00 n+1
¢ 0%¢ 39
J] = _ v -1 _ =1 _ ¥
Wl Akaazn-ﬂ A L+ a4 4D Akaoaan+1 AR a1 00 n+1
" " o9
L 90 n+1 dot n+1 A n+1

(5.38)
The obtained matrix is almost symmetric, apart from the idouation in J(2,3). The first
term in this entry causes a non-symmetric matrix. Only widr hardening is assumed
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input: Ae

o" =0, +EAe
¢ =- (Ueq(atr) - Uf)

if >0
elastic steps = o
AL =0
Asgq =0
else
plastic step
= RMA:
Ry = ¢
do|R| > &;
Determineoeg, g—f, g—z, g‘;iz, g% and% with o

. deh .
Determineos, g—z, a%‘{r 223 with ey
eq

calculate the residual vectofR }
calculate the Jacobidi]

Determine the incremeri§V} = [J]7! {R}
and fromAV/ Tl = AV 4§V

updateo, &, A andedy
end do
end if

updates, A andedy

Figure 5.5: Iteration scheme for the return mapping algorit

(4; = 0), the Jacobian is symmetric. This Newton—Raphson systametges quadrati-
cally in the neighbourhood of the solution.

The algorithm presented here is generic in the sense theinioti dependent on the
chosen yield locus and isotropic hardening law. Howeveragpplied kinematic hardening
model is an explicit function within this RMA. Another typd kinematic hardening re-
quires adaptation of Equations (5.34) and (5.38). To implatnthe yield locus definition,
the first and second derivatives with respect to the stressesuired. For the isotropic
hardening law, only a function evaluation and the deriatiith respect to the equivalent
plastic strain is required. This considerably increasedl#xibility of the algorithm.

Figure 5.5 shows schematically the loop that describes & .Rrhe input consists
of a new strain incremenke. A trial stress ") is determined by assuming that the total
strain increment is elastic. This assumption is checkeld thi¢ yield criterion. If the load
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increment is indeed elastic, the final stress equals thiestrizss. If the material deforms
plastically, the return mapping algorithm is entered areréssidual functions are used to
find the updated values for, o andegq. When the norm oR . is smaller than a prescribed
tolerance’;, the solution is found.

5.2.2 Stiffness matrix

At the global level of the FE simulation, the material stiffs at the integration points is
required. The local stiffnesses are then assembled to aletergtiffness of the structure.
For the small strain theory that is used here, the stiffnessis to be determined in terms

of: 4
K= (5.39)
de |, 1
The derivative can be obtained via the RMA determined in thess update procedure.
Equation (5.36) is used to determine the stress, but it isesged in terms of strains. A

perturbation method is used to determine the stiffness:

do de
R
dA 0

From this set of equations the desired relation can be &ldthis can be done in terms of
every individual matrix component, but it is more straiginfard to isolate only the four
submatrices of the complete Jacobian:

K1 | Kip ... do de
Ko | K22 ... dep =10 (5.41)
: : da 0

The stiffness matrix is easily calculate from this:

g—: = (K1 — KK5 Kyy) ™! (5.42)
Again, this relation is established independently of thasetm yield surface and the isotropic
hardening law.

Both for the return mapping algorithm as for the consistéffhess matrix, dedicated
algorithms were developed. Importantly, the combinatibthe Von Mises yield locus and
linear isotropic/kinematic hardening can be evaluatedig#y, even for an Euler back-
ward algorithm. Besides, the Von Mises model offers advgagdnecause of its favourable
mathematical description. The concept presented hererdmdsave that advantage, but
does have the benefit of flexibility and generality. Addidtiy, this concept can be used
for any material model that is evaluated in this manner.

5.2.3 Application to DC06

This subsection discusses the application of the genericrrenapping algorithm to the
experimental results of DC06. The monotonic, cyclic andh@gbnal experiments were
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Table 5.1: TheR-values for DCO06.

Ro Rss Roo
1.85 2.06 2.51

simulated using the generic return mapping algorithm. THB4B material model was
used, with thekR-values as presented in Table 5.1. In the following, isatrapd combined
isotropic/kinematic hardening models are used.

Figure 5.6 shows the results of the monotonic experimemnthfoplane strain tension
tests (in RD and TD), and the simple shear experiment. Thivaeut stress—strain curves
were determined by the Hill'48 yield criterion and tiRevalues from Table 5.1. In the first
5% of strain, the three hardening curves correspond. Theemaain tensile tests show
good agreement for the entire length of the hardening cufie shear test on the other
hand shows a deviation that increases slightly with adufigtrain. Due to the rotation in
the material, other slip planes are activated, leading ifereint hardening behaviour. The
concept of equivalent stress and strain appears to bedrfaalhigher strains.

The experiments were additionally used to determine themahiparameters for the
Swift law in an isotropic hardening model with the Hill'48e}d criterion. In the fitting
procedure, an objective function is defined that describestcumulated stress difference
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100 |

50 e tension(RD)
******** tension(TD)

0 L L
0 0.05 0.1 0.15 0.2
equivalent plastic strain (=)

Figure 5.6: Results for the monotonic experiments and thi& 8w in equivalent stress—strain
space.
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Figure 5.7: The prediction of the classical hardening modethe cyclic tests.

between the simulations of the experiments and the expatahesults. The least squares
method was used to determine the material parameters. Vergrene plane strain tension
tests prevailing in the fitting procedure, more weight washatted from the shear test to
the objective function. The final result is shown in Figuré &nd the parameters can be
found in Table A.3.

To describe the mechanical behaviour in cyclic loading kihematic hardening mod-
els were developed. The generic return mapping algoriths wgd with Armstrong—
Frederick kinematic hardening and isotropic hardeningating to Swift. This is denoted
as the “combined” model. The experiments from Figure 4.5thrdwo plane strain ten-
sile tests were used in the fitting procedure. The monotdniple shear experiment is
not included since the cyclic experiments already desthibénitial monotonic hardening
in simple shear. Figure 5.7 shows 2 cyclic experiments on®&fd the results of the
models with isotropic and combined hardening. In the praisphase, the material mod-
els perform similarly, although both underestimate thesstrat the end of the first stroke.
After the first load reversal the models are initially not &, but the deviation increases
as deformation continues. Neither of these models were@alokgpture the work hardening
stagnation, but the combined hardening model describesxiieriments better. In partic-
ular, the experiment with a large pre-strain shows that amapic material model cannot
describe cyclic loading, due to the large Bauschinger effete combined model shows a
better performance, but the prediction after the secordideersal is still not satisfactory.

The performance of the isotropic and combined hardeningaineds additionally as-
sessed with the experiments constituting an orthogorahgpath change, see Figure 4.13.
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Figure 5.8: The prediction of the classical hardening medethe orthogonal test with unloading.

The results of the simulations are presented in Figure 5h@. iffitial plane strain tension
is accurately described, but the subsequent shear sttesshaf strain path change is not
captured. The prediction of the combined hardening modeleshear stress is lower than
the prediction of the isotropic hardening model. In the corat model, the hardening
is divided over a contribution to the shift of the yield surdaand a “growth” of the yield
surface. If more hardening is attributed to the shift of tiedd/surface, size of the yield
surface will remain smaller. Upon an orthogonal strain mdthnge, the flow stress in the
new direction will be lower than the flow stress predictedwy isotropic model. Hence, a
combined model gives by definition a poor description of trechanical behaviour in an
orthogonal strain path change. After some more shear dettym the simulation results
coincide again with the experiments, but the charactesigif the mechanical behaviour
cannot be captured with these models.

From the experiments investigated here, it is concludetttitamonotonic hardening
behaviour is well described by both the isotropic and thelmosd hardening model. The
prediction of cyclic behaviour with the kinematic descidptis better than the isotropic
model, but it is still not satisfactory. The simulation oftbrthogonal experiment shows
that neither model can describe the characteristic ovetsfter the strain path change.
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5.3 The Teodosiu & Hu model

To describe the strain path dependent mechanical behaxisbheet metal (see Chapter 4),
Teodosiu and co-workers (Teodosiu and Hu, 1995; Teodo8lf;2Jenishi and Teodosiu,
2004; Uenishet al, 2005) developed an extensive material model. The philegbghind
this model is that the specific strain path dependent mechbméhaviour is caused by the
patterning of the dislocation structure. Via this approtighmodel is able to describe the
Bauschinger effect; the transient hardening and the warttemang stagnation after a load
reversal. And in particular, the characteristic overshoastress after an orthogonal strain
path change can be described.

Firstly, the structure of the Teodosiu & Hu model is presdnt€henomenological
models are used to describe the evolution of the differgme@s of the micro-structure.
In the next subsection, the implementation of the evolutéiguations in the framework of
Section 5.2 is discussed. Finally, results of the fittingcpaure on DC06 are presented.

5.3.1 Description of the model

The main component in this model is the 4th order tei$sibrat describes the influence of
the micro-structure on the mechanical behaviour. It dbssrthe build up and breakdown
of LEDS and its polarity, microbands and the cellular stmoet Still, in its essence, this
material model is a combined isotropic/kinematic hardgmrodel where the parameters
that were determined in Section 5.2 become functions oftth@shistory. The dislocation
structure contributes to the strain path dependent betavia the back stress evolution.
If an orthogonal load path is applied, the back stress wdtease rapidly to mimic the
overshoot, and in aload reversal the evolution of the baeksis such that the Bauschinger
effect, the transient hardening and the work hardeningstiémn is described. Depending
on the loading direction, the different componentS icontribute to the total strength 8f

The evolution of the strength of the dislocation structsiie a function of the polarity
of the LEDS. It is denoted with the second order te3and describes, depending on the
loading direction, the pile-ups of dislocations on the LEPScontrols the Bauschinger
effect in a load reversal. For a well-annealed materiakhalinitial values oS andP are
equal to0.

At a macro level, kinematic and isotropic hardening are diesd. The kinematic hard-
ening evolution is completely dependent on the strengtthefdislocation sheets. The
isotropic hardening is dependent on the strength of theahsion sheets, but the cellu-
lar structure, indicated bR, also contributes to the isotropic hardenimgis completely
separated from the evolution of the other internal statalées.

A disadvantage of the model is the high number of materiahupaters (13) that are
required to describe the evolution of the internal statéatdes. To determine the material
parameters, monotonic, cyclic and orthogonal experimamgsequired. For materials that
show limited strain path sensitive behaviour, some of theriral state variables can be
assumed equal to 0. This leads to a reduction in the numbertdrial parameters that
need to be determined (Haddaati al., 2006). Strain rate sensitivity was added to the
isotropic hardening model (Uenishi and Teodosiu, 2004)tHmievolution of the kinematic
hardening remains rate independent.
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Yield stress and yield function

In the Teodosiu & Hu model, the classical yield function isgoyed, Equation (2.1). The
flow stress is written as:
or=1t+ R+m|S| (5.43)

Wherery is the initial yield stressR describes the isotropic hardening due to the cellular
dislocation structure and the last term describes theapmihardening due to the strength
of the dislocation sheets. The influenceSfis distributed across the isotropic and kine-
matic hardening via the material parameter

Kinematic hardening is employed via the effective streshdéalculation of the equiv-
alent stress, as in Equation (2.6). The evolution of the bsigdss is modelled by an
Armstrong—Frederick-like saturation law:

& = Co (asN—a) 4 (5.44)

whereC,, is a material parameter that defines the saturation rate satueation value of
the back stress is defined by, which is not a material parameter, but an internal variable
Itis defined in the next section. The back stress develogidirection of the normalised
gradient of the yield function:

o5

N = (5.45)

s

Strength of the dislocation structure

The strength of the dislocation structure is describedguie internal state variables; the
tensorS and the scalaR. The pile-ups of the dislocations at either sides of the LEDS
described by the polaritf?, which is a state variable. Upon a deformation reversal, the
dislocations are released from their position and are abhaigrate to the cell interiors.
The evolution equation reads: )

P=C,(N-P)i (5.46)

The polarity converges to the current loading direcdrwith the saturation rat€,. For
a well-annealed material, the initial valuesfP andR are zero.
The tensosS is divided into two parts; a part that contains the strengtthé present
direction of deformation and a part that contains the stireofthe latent structuresp and
the tensoS, , respectively.Sp is a scalar value because it represents solely the stremgth i
the current loading direction:
So=N:S:N (5.47)

The latent strength of the dislocation structure is deteetiiby subtracting the directional
part fromsS:
S=Sp+S. — S . =S—SoN®N (548)

If the decomposition into two orthogonal components is dasea normalised tensor, this
allows the use of an additional equation:

IS|?> = 83 + ISl (5.49)
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In the following, the evolution of the state variables in fle@dosiu & Hu model is pre-
sented. Here, the directional and the latent parts of tHedadion structure are considered
as individual state variables. The evolution equatiorSforeads:

o ISLIN™ «
Si=-a(5) sd (5.50)

S

The term between brackets incorporates the influence ofrttwauat of pre-strainC; de-
scribes the saturation rate §f. Initially, S, = 0 and according to the evolution equation
it cannot increase. Indeed, during monotonic loadBigremains zero. After a strain path
change however, a new decomposition is made between thetidiral Sp and the latent
S, part, based on the new loading directiSn

The evolution of the strength of the dislocation sheets isutated by the individual
evolution of the directional and latent parts of the ter§oin Section 5.3.2 this will be
discussed more thoroughly. The evolution equation for trength in the current loading
direction is described using:

Sb = Cq (hp (Ss— Sb) — heSp) A (5.51)

Where the parametelgy and Ss denote the saturation rate and the saturation value, re-
spectively. To complement Equation (5.51), the contributif the kinematic hardening is

introduced via: | N
he = = (1 _% ) (5.52)
s

The range ofi, is (0, 1), depending on the loading scenario. For monotonic loading,
(a : N) /as will converge tol, henceh, = 0. This will speed up the evolution dfp in
Equation (5.51). For orthogonal loadihg — % and for reverse loadink, — 1. For re-
verse and orthogonal loading, the developmerfipfs decreased. The reverse loading re-
sults in the largest stagnation. The saturation value fobttk stresss in Equation (5.52)

is a function of the dislocation structure:
as=op + (1 —m)/SZ+r|S|? (5.53)

In this equationg, is a material parameter that denotes the initial saturatidue for the
back stress. The material parametedefines the division of the contribution {8 to the
isotropic hardening Equation (5.43), or to the kinematiackaing Equation (5.53). In the
last equation, the definition ¢8| is adapted by the parameteto describe the stress—strain
relation in an orthogonal strain path change.

In the load step directly after an orthogonal strain patmgleathe decomposition &f
into Sp andS, changes. The decomposition is made based on the curremdadicection
via Equation (5.47). Notice th&titself does not change. if > 1, the contribution of the
latent dislocation structure exceeds the contributiomfs before the strain path change.
This results in a sudden increasexf) and hence in a rapid build-up of kinematic stress in
the new loading direction. This effect mimics the overshamgerved in the experiments.
Next, S, decreases via Equation (5.50) and the stress curve wiltm@ragain with the
regular hardening curve.
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The value ofip is determined by the following function:

1—C%C %—P:ﬂ‘ if P:N>0

hp = d==pllos o g (5.54)
1+ P:N)y*|1——2" 2Pl jf P:N<0
a1+ ) |: Cam Gy Ssi| [ <

This function is continuous iR : N and is used to mimic the mechanical behaviour after a
load reversal. With increasing monotonic loadiRg, N — 1, Sp — S5 andip converges
to 1. This leads to the maximum contribution(6t — Sp) to Sp in Equation (5.51). Upon
a load reversalP : N — —1. The contribution of the polarity t&p will stop because
hp — 0. Additionally, becausé, = 1in aload reversal§p will decrease.

The isotropic hardening due to the cellular structure i€desd with the variable. It
is not dependent on the strain rate direction, only on thévatgnt plastic strain rate:

R=C (Rs—R)A (5.55)

The isotropic hardening converges to the saturation vRlugy the saturation rat€,. This
equation is equal to a Voce relation. It is noticed that ttasdiening law can easily be
substituted by any other hardening model that is a functicrp

The Teodosiu & Hu model requires the following 13 materiatamaeters: Ss, Cg,
C,Cy, o, Cr, Rs, Cp, np, 1y, r, 7o andm.

5.3.2 Implementation

This section describes how the Teodosiu & Hu model can beemehted in the framework

of the generic return mapping algorithm. In total, 7 reslduactions are used to update all
the state variables in the model; «, Sp, S., P, R andA. The model initially proposed by

Teodosiu and Hu (1995) is not conclusive on the evolutiomefstrength of the dislocation
structureS, a proper decomposition & in S and Sp was ambiguous. In this section a
method is proposed that leads to an algorithm that realitidescribes the evolution of

SL andSD.

The decomposition ofS

The approach followed to determine the generic return nmapigi followed here to derive

a stress update for the Teodosiu & Hu model. The Euler backwethod is applied and

a Newton—Raphson procedure is used to determine the st@bles at the end of a load

increment. An essential feature of the discretisation efittodel is that the strength of the
dislocation structur8” is decomposed int8{' andSj at thestartof a load increment. The

Euler backward method prescribes that the update of the waiables is done, based on
the direction of plastic flow at thendof the increment:

SS — Nn+1 - gn IN"+1
S’E — Sn _ SSN”+1 ® Nn+1
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Within the stress updatéj andSy’ are considered as initial values, but they are still vari-
able, since they depend & *! which on its turn is dependent on the stress state at the end
of the increment. After the decompositio$; andS{’ are increased with their respective
increments:

sgt! N8 N4 ASp
SI|1+1 - §"_ SSNIH-I ® Nn+1 + ASL

The strength of the complete dislocation structure is thafuated as:
Sn+1 — SS+1Nn+1 ®Nn+l + Sf+1 (556)

It is noticed that Wanget al. (2008) have rewritten the incremental equations in a proper
rate form. The method introduced here does not differ gffelgtfrom their work.

The return mapping algorithm

In the former section it was explained that during the loadément, the direction of plastic
flow remains constant. The incremental form of the EquattoQ) then reads:

Ist "
AS. = —C (LT) SItlAL (5.57)
S

It can be seen in this equation that every componet$f is proportional to the compo-
nents ofS}*!. Hence, the incremental increaseSpfcan be written as:

AS_ = e8! (5.58)

Thus, in the return mapping algorithm, ordyneeds to be determined which is more effi-
cient than iterating for every single component. Substituin to Equation (5.57) yields:

o\ ™
e =—CAA (”adl_si"”) (1+4¢) (5.59)

S

The residual functions for the stress, the back stress anpléistic multiplier are equal
to the residual functions in the generic return mapping réitigm. The complete set of
equations that need to be solved in the Teodosiu & Hu modgbi@sented in Equations
(5.61) to (5.67). To determine the state variables at theodreyery load increment, the
same procedure as in Section 5.2 is applied. The set of stdtibles that are determined

are:
Ao

Aa
ASp
{V} =1 Ae (5.60)
AP
AR
AL
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The stress, back stress and the plastic multiplier are itbestby similar equations as the
classical hardening laws. F6p, S;, P andR the evolution equations (5.51), (5.59), (5.46)
and (5.55), respectively.

The following equations show the residual functions. Thessupts denoting theth
iteration and the subscripts denoting the load steps artteaimwihere possible, to enhance
readability:

9
R = Ae—E'Ac— AL % (5.61)
do n+1
Ry, = Aa(l+ ALCy) — Co(@sN —ay) AL (5.62)
Rs, = ASp—Ca(hp(Ss— St —ASp) —hq (S&+ ASp)) AL (5.63)
JTte|lso)\”
Rs, = e+C (ﬁ) (1+¢) AL (5.64)
S
R. = AP(1+CyAL)—Cp (N—P,) AL (5.65)
R. = AR(1+C AX) —C; (Rs— Ry) AL (5.66)
Ry = —(0eq— (t0+ Rur1 +m[S"])) (5.67)

This set of residual functions gives, with the correct Jéolquadratic convergence in the
stress update.

5.3.3 Application to DC06

In this section the parameters of the Teodosiu & Hu model #edfio the DC06. The
Hill'48 yield criterion is used in the optimisation procagu Monotonic, cyclic and or-
thogonal experiments were used in thaMAB routinel sqcur vef it to determine the
material parameters. The routine constitutes a least sgugtimisation method, in which
all the experiments are used simultaneously. The modetasifib the following 9 exper-
iments: plane strain tension test in transverse directlme cyclic tests in simple shear
with different pre-strains (Figure 4.5); an orthogonat teth unloading (Figure 4.13) and
four orthogonal experiments without unloading (tests h-Bigure 4.19).

The objective function in this procedure is the differeneedeen the measured stress—
strain curves and the simulated stress—strain curves. TAcTe. A8 routine minimises the
squares of the differences. The experimental and simutatees are divided over 325 data
points. Because of the coupling of all the equations in theehdhe material parameters
need to be determined concurrently. To assure a good d#ésnorgd the typical strain path
dependent behaviour by the material model, some parts oftthes curves are granted
additional weight in the objective function. The stressethe reverse stroke in the cyclic
experiments are multiplied by a factor 100; the shear sulesstly after the strain path
change in the the orthogonal test with unloading is mutiphlby a factor 150 and the shear
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Figure 5.9: The description of the cyclic experiments byTaedosiu & Hu model.
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Figure 5.10: Evolution of state variables in cyclic test 2.

stresses directly after the strain path change in the ootalgests without unloading are
multiplied by a factor 75.

The results of the fitting procedure of the material paransate the Teodosiu & Hu
model are depicted in Figure 5.9 and Figure 5.11. The cyajements in Figure 5.9
show that the Teodosiu & Hu model describes the behaviodnigiaeading scenario well.
The Bauschinger effect, the transient hardening and thé Wwardening stagnation are
captured by this material model. The quality of the fit is ipeiedent of the amount of
pre-strain in the experiments. A small discrepancy is oleskat the end of the second
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and third strokes. The fitting results show a lower stress tha measured stress. For this
situation, the isotropic hardening law can be extended avidrm that is linear with respect
to the equivalent strain.

According to the results depicted in Figure 5.9, the apprdabowed in the Teodosiu
& Hu model seems to work well. The evolution of the internalighles that represent the
micro-structure is depicted in Figure 5.10. It can be seanmttie polarity component in
the shear directionKy,) increases in the first stroke of simple shear (Figure 5)).0(he
value forh, starts at 1, but decreases becafiseand P have a different evolution rate,
leading tohp < 1in Equation (5.54). The values fax,, as and Sp increase accordingly
(Figure 5.10(b)). Directly after the reversal,, decreases ankl, — 0. This causes a
stagnation in the evolution ofp, and consequently ins. In turn, the back stress,,
does not evolve any further and hence the stress responsguire 5.9 mimics the work
hardening stagnation. The same procedure is followed thitesecond load reversal.

Figure 5.11 shows the results in the experiment with an gadhal loading strain path
change with elastic unloading. Overall, the model dessribe experiments accurately,
except right after the strain path change. The increasedarsstress in the fitting pro-
cedure is not as steep as in the experiment and does not feaamakimum observed in
the experiment. However, the evolution of the internalestadriables show that the or-
thogonal strain path change is detected by the model. Jiémtebe strain path change
S. = 0 andSp ~ 125 MPa. At the strain path change, the orientationsSgfand S.
are interchanged. The directional strength decreasesRig0ré 5.11(b)) an8, increases
strongly (Figure 5.11(c)). The increasing value $rleads to a sharp increasedg via
Equation (5.53). This results in a fast development of thekiséress in the shear direction
(cxy) and a sudden increase in the shear stress) (n Figure 5.11(a). At the same time,
hy shows a peak which in turn hampers the evolutiorbgfafter the strain path change.
The evolution ofSp is slower than the decrease$f, and hencers decreases. This effect
is passed on tay, and is reflected in the decreaseiy), in Figure 5.11(a).

After the strain path change, the Teodosiu & Hu model alsdiptea peak in the tensile
stress, Figure 5.11(a). The maximum value that is reach@fidPa. During the tensile
deformationg, evolves, but it does not evolve to O upon elastic unloadingndg, as the
stress state moves through the elastic region and becoastcmt the yield surface, the
stress state will translate over the yield surface towardsstmple shear point. However,
the simple shear point does not lie at the axis= 0 becauser, # 0. As deformation
continuesg, vanishes and, — 0. Only then the simple shear point of the yield surface
is on the axisr, = 0.

The results of the continuous orthogonal strain path changehe fit by the Teodosiu
& Hu model are presented in Figure 5.12. In this experimeatdtiess—strain curve is
described well. In particular, the overshoot is capturemlieately. The noise observed in
the tensile stress after the strain path change is causdthotse in the measured strain
in the experiments. Although the strain input is smoothéd, remaining noise causes
the stress state to enter the elastic region. This does fiotite the state variables that
describe the hardening of the material. As in the cyclic expents, the stress is under
predicted at higher strains. Because the stress statdatiesmsver the yield surface,,
increases rapidly, but alse, vanishes during the translation over the yield surfaces Thi
explains why the model does not show the peak in tensilesstiftsr the strain path change,
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Figure 5.11: The stress prediction of the Teodosiu & Hu mau#he orthogonal test with inter-
mediate elastic unloading.

which is observed in the simulation of the test with elastitoading.

In Figure 5.11 it is observed that the overshoot is not desdraccurately. The typ-
ical cross-hardening is not fully captured, but the experita with strain path reversals
(Figure 5.9) and the orthogonal experiments with a contiisusirain path (Figure 5.12)
are described well. To improve the description of the experit with an orthogonal strain
path change with intermediate unloading, another fit proceevas performed, in which
the results of that test make a larger contribution to theathje function. The results of
this fitting procedure are depicted in Figure 5.13. Indeleel description of the orthogonal
experiment is improved, the cross-hardening is betterrdest; but the fit is still not “on
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Figure 5.12: The stress—strain curves for the experimethtawwontinuous orthogonal strain path
change and the prediction of the Teodosiu & Hu model.

top” of the experimental results. In Table 5.2 the the patansdor the current fit show a
smaller contribution of the kinematic hardenimg € 0.9 instead ofz = 0.47) to the model.
This explains why the peak in the tensile direction afterdtrain path change is smaller
than observed in Figure 5.11(a). Figure 5.13(b) shows thalteof this fit to the exper-
iments with cyclic loading. Here, the description of the esimental results is relatively
poor. Hence, the accuracy of the description of the experisngith orthogonal strain path
changes comes at the cost of loss of accuracy in the descripitthe cyclic experiments.

5.4 The Levkovitch model

In this model the different hardening phenomena are madi@liéh three different hard-
ening models. Kinematic and isotropic hardening are enguldy describe the monotonic
and cyclic loading behaviour of material. These two modedscanfirmed in the literature
and are much used in material modelling. The overshoot shalb$served in an orthogonal
loading scenario is modelled with distortional hardeniogMkovitch and Svendsen, 2007).
The change of the yield surface is described such that it doesffect the stress—strain re-
lation in monotonic and cyclic loading. Only in the latenttpaf the loading direction does
the shape of the yield surface change. The motivation far dpproach is found in the
work of Peetergt al.(2002), in which orthogonal strain path changes are cdgébaith a
change inyield surface. Experiments were performed onstélel with strain path changes
from plane strain tension to simple shear. X-ray diffractieas used to describe the crys-
tallographic texture. Additionally, the formation of CBBivas discussed and the influence
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Figure 5.13: Results of the Teodosiu & Hu model with a bettenffihe orthogonal strain path
change.

of these on the elastic—plastic transition. This alloweal dietermination of the shape of
the yield surface at the end of the pre-strain phase. Thdtiresyield surfaces showed a
“growth” of the yield surface in the latent direction. Thesaloved distortion is used in the
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Table 5.2: The Teodosiu & Hu material parameters for DCO6.

(b) Fit with the emphasis on the

(a) Fit with the emphasis on the be- behaviour in orthogonal strain path

haviour during cyclic loading. changes.
parameter value parameter value
10 (MPa)  125.0 0 (MPa)  90.0
(o7} (MPa) 0.5 (073} (MPa) 0.93
S¢(MPa)  238.8 S¢(MPa) 2942
Rs(-) 65.0 Rs(-) 62.5
Co O] 1.2 Co ) 5.06
C () 50.0 C () 38.13
Cq(-) 5.42 Cyq(-) 6.80
Co () 164.7 Cy () 250.0
C () 44 4 C () 145.7
np O] 350.0 np ) 66.36
n (-) 0.85 n (-) 0.77
m(-) 0.47 m (-) 0.90
r() 2.85 r() 14.305

Levkovitch model to describe the cross-hardening effette $egmented construction of
this material model allows the use of different isotropicl &mematic hardening models
for the description of the behaviour under cyclic and monmading. In this work, the
Swift law is employed for the isotropic hardening and the Atrang—Frederick law is used
for the kinematic model.

In the original work, the Hill’48 yield criterion was adajptéor the distortional harden-

ing:
p=vE&:(M+H):¢—o (5.68)

The tensoM describes the initial material parameters of the Hill'4&erion. H is a
fourth order tensor, analogousi, describing the distortion of the yield surface Hf=

0 the initial yield surface is described. A similar procedasein Section 5.1.2 can be
used to replace the Hill'48 yield criterion with an alterimatdescription. This is done by
substituting the first term in the root with the square of derahtive material model:

¢ = \/(oeq(g))2 +¢:H: ¢ —oy (5.69)

The Teodosiu & Hu model and the Levkovitch model use a singlzwation for the
dislocation structure and distortion, respectively. Thevlovitch model also applies a
division between the directional and the latent distortagpending on the current loading
directionN:

Hpb = N:H:N (5.70)
H = H-HN®N (5.71)
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The evolution of the distortion is described in terms of &diion and a latent part:
H=Cy(H$— H)N®NAL+C (HSI-N®N)—H )1 (5.72)

The first term on the right hand side of this equation dessrthe directional distortion
and the second term the latent distortion. The directioisabdion is determined with the
parameter€’q and H that describe the evolution rate and the saturation vaispgctively.
C) and H? control the evolution of the latent distortiodi.describes the fourth order unit
tensor.

To adapt the mechanical behaviour under non-proporti@aalihgonly, the parame-
ter H; = 0. During monotonic loading the latent distortion will evelvo H?® and the
directional distortion will remain 0. Hence, in monotonicayclic loading, the isotropic
and kinematic hardening laws dictate the stress—straaioal Only when another strain
path is applied will the distortion affect the mechanicahéaour. This is the result of the
change inN, that changes the division of the distortion in the laterd #re directional
parts. Hence, in an orthogonal strain path change the prelitatent distortion becomes
directional and the stress state translates to a “distbpted of the yield surface. Depend-
ing on the distortion, the flow stress is changed to deschibeross-hardening effect. After
the strain path chang® is again constant, anflp — 0. This results in a lower flow stress
and as such mimics the softening after the overshoot.

The overshoot observed in the orthogonal test is descriitbdwincrease in the elastic
domain with the Levkovitch model. This is in contrast witle fheodosiu & Hu model that
predicts a low flow stress and a high hardening rate in an gathal strain path change.

5.4.1 Implementation

In this work, a combination of isotropic, kinematic and disibnal models is used. In par-
ticular, the framework as presented in Section 5.2 is del&irdo this end, Equation (5.72)
needs to be rewritten in a residual format. This equatiodgegpon discretisation as fol-
lows:

Ry = AH— Cq(H — H))N®@NAA—C (HPI-N®N)—H )AL (5.73)

This evolution results in a system of 81 equations if no usedde of symmetry. To speed
up the calculation, the tensor is rewritten in the formathafl¥I tensor in the Hill'48 yield
criterion. Hence, the shear contributions are determinedrg component il and the
yield surface distortion is independent of the hydroststiiess. The reads, in matrix
format:

T, + T3 —T;5 T, 0 0 0
T3 T + T3 —T1 0 0 0
_ 71> -Ti hn+17, 0 0 O
[H] = 0 0 0 . 0 O (5.74)
0 0 0 0 75 O
0 0 0 0 0 Ts

This symmetric matrix is fully determined by the parametrs.Ts. The set of residual
functions for a combined isotropic/kinematic hardeningielavith distortional hardening
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is presented here:

R, = Ae—E'Ac—ALJ2

Ry = CosNAL—CoanAL—(1+ AAC,) Aa

Ry = AH-Cy[H§— Hp|N®@NAA- (5.75)
G[HI-N®N)—-H_]AA

Ry = 02q— SHE — ot

Since only the components @fneed to be determined, only the components on the diag-
onal of Ry need to be used in the return mapping algorithm. The full matn then be
constructed from the values @&f

The state variables that are determined with this update are

Ao
V) = 2% (5.76)

AL

5.4.2 Application to DC06

In this section the application of the Levkovitch model to @Js discussed. The mate-
rial model is fitted to the experiments with monotonic, cg@hnd orthogonal strain paths.
The distortional model is developed such that it does notiémite the stress—strain rela-
tion in a monotonic or cyclic strain path. Hence, firstly thaterial parameters for the
isotropic/kinematic hardening are determined. With thEs@meters fixed, the parameters
of the distortional hardening are fitted to the orthogongleziments. It is noticed that
with the current description of the kinematic hardeningg itot possible to describe all the
phenomena that occur in a cyclic strain path change. Fokihématic hardening model,
a good description of the stress level at the end of the thioks in the experiment with
cyclic loading can be achieved. This is at the expense ofadively poor fit of the initial
part of the stress—strain curve. A good fit to the initial pdrthe stress—strain curve can
be also be obtained, but then the results for higher stragideare poor. For both fits, the
distortional model has to be adapted for an accurate déiseripf the hardening in the
experiment with an orthogonal strain path change. Thedittirocedure is performed with
the internal least squares optimisation fromMAB: | sqcur vefit.

To have a proper fit of the initial part of the hardening cuéw, contribution of the
monotonic experiments to the objective function is incegsThe result of this optimi-
sation is depicted in Figure 5.14. Indeed, the initial pduthe hardening curve is repre-
sented well, but the remainder of the stress—strain curmeti@s well represented. The
Bauschinger effect is predicted well, but transient hairpis not described by this set of
parameters. The stress—strain curve deviates approtyniste’5 MPa directly after the
strain path change, but at the end of the second stroke, periment and the fit do co-
incide acceptably. The difference after the second rel/exrset as poor as after the first
reversal, but the hardening rate is too high, resulting imoehtigh stress level at the end of
the third stroke.
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Figure 5.14: The experimental cyclic results (solid linegth the fit of the Levkovitch model
(dashed lines).

Table 5.3: Levkovitch material parameters for DC06.

(a) Fit with the emphasis on the initial (b) Fit with the emphasis on the cyclic
part of the hardening curve. loading.
parameter value parameter value
[of} (MPa) 70.0 0o (MPa) 0.0
C (MPa) 349.0 C (MPa) 413.7
go (-) 50-107° g0 (-) 3.42.107°
n(-) 0.2969 n(-) 0.1961
Cq (-) 15.0 Co(-) 53.12
as (-) 40.0 as(-) 15.00
Cq(-) 15.0 Cq(-) 5.39
Hj O] 0.0 HdS O] 0.0
C () 11.0 C () 3.95
Hls O] 0.65 H|S O] 0.77

With the fit for the isotropic and kinematic hardening mod#e parameters for the
distortional hardening model are determined. The matpaehmeters are denoted in Ta-
ble 5.3(a). The results for the experiments with and withioigrmediate elastic unloading
are depicted in Figure 5.15. The results of this set of natparameters shows a good
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Figure 5.15: The Levkovitch model in the experiments wittoathogonal strain path change.

description of the orthogonal experiments. The peak in ieasstress after the strain path
is captured for both the strain path with and without intediate elastic unloading. Also
the work softening that is measured in the experiment isucagtby the model. After that
the regular hardening curve is followed accurately.
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Figure 5.16: The result of the parameter fit of the Levkovitabdel with increased weight in the
objective function for the Bauschinger effect.

The performed fit provides a good agreement for the initiadléaing and the mechani-
cal behaviour in an orthogonal strain path change. The fi@tyclic experiment however



96 Material models for non-proportional loading

is poor. For that reason an extra fitting procedure was paedrto improve the description
in cyclic loading. The results of this fit for the experimenitiwcyclic loading and with
an orthogonal strain path change are depicted in Figure 3i€ material parameters are
denoted in Table 5.3. Indeed, Figure 5.16(a) shows an inggrpvediction of the cyclic
behaviour. Especially, the stresses after the load regeasain better agreement with the
experiments. At the end of the third stroke, the measuredstoincides with the predic-
tion of the model. In the first stroke however, the hardenatg is initially too high, and
subsequently too low. At the end of the first stroke in tesh8,difference in stress level
is approximately 30 MPa. Figure 5.16(b) shows the fit of ttetattional hardening model
to the experiment with an orthogonal strain path change intdrmediate elastic unload-
ing. The characteristic peak after the strain path changeatde captured with this set of
parameters for the isotropic/kinematic hardening. Thiduis to the high evolution rate of
the kinematic hardening. As the strain path changes, threase of kinematic hardening
is larger than the decrease in stress due to the distorti@mdening. More distortion indi-
cates a higher initial yield stress and a better initial dpsion of the peak, but due to the
rapid kinematic evolution, the stress would increase euvethér, hereby creating a large
discrepancy between the model and the experiment. The mssdrved represents a bal-
ance between a good description of the stress peak and a gsodpdion of the softening
after the peak.

To describe the monotonic hardening, cyclic behaviour andsshardening, the Lev-
kovitch model needs to be adapted. With the current combimat isotropic, kinematic
and distortional hardening models, only the cross-hardeaii only the cyclic behaviour is
described accurately.

5.5 Strain path change indicator

The material models presented in this chapter show diffenethods to describe the me-
chanical behaviour of sheet material. The increased acgtinat is acquired via the strain
path sensitive models is obtained at the expense of two ulifés. Firstly the material
models are more extensive compared to the regular mateoidéis. The Teodosiu & Hu
model for example, requires 10 times more processing tingesimulation of cup deep
drawing. Although a good convergence within the Teodosiukribdel is observed, the
number of calculations remains higher compared to conveatimodels. Furthermore,
more material parameters are required to fit the models. tamgot be determined from
simple monotonic and cyclic tests; orthogonal experimengsrequired to allow for the
complete determination of the material behaviour. It isre¢fere not a definite choice
to use a strain path sensitive material model in simulatidnghis section a strain path
change indicator is developed that keeps track of the spaih. It indicates whether a
strain path sensitive model is essential for a good prextiati the process, or whether a
regular material model is sufficient. This makes simulatiorore efficient, because now
the time-consuming material models are only used when saces

To trace the strain path in a simulation, some requiremesed to be met. The indicator
must be easy to evaluate during a simulation, otherwise itldvisnake more sense to use
a full strain path dependent material model. Furthermoiis,desirable that the indicator
is a state variable that is updated during the simulatiore ifldicator is implemented at
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the material model level, which means that strains are usexhltulate the strain path
sensitivity.

Schmittet al. (1985) proposed a strain path change indicator based ondgueestial
strain paths. The cosine function is used to indicate théedygjween the two strain paths:

_ €1 :.€>
levl ez

For monotonic loadingg = 1, for reverse loadingg = —1 and for an orthogonal strain
path changg = 0. This indicator works well for the traditional experimeirisivhich a
strain path change is applied by cutting a smaller sampie &darger sample. To describe
the strain path changes in a full simulation, the straingnwnts are used to determine the
strain path change:

(5.77)

,3 Aé‘l . Aé‘z
|Ae1] | Aez]
This formulation makes the indicator step size dependenpatticular in the stage of the
simulation where a strain path change occurs, smaller ltsab sre required to keep the
simulation converging. And with a smaller step sipe;~ 1, because the difference in
orientation between two sequential strain incrementsiesmegligible.

Here, a strain path change indicator is proposed based defimtion of Equation (5.78).
Instead of comparing two sequential strain incrementsstiaén history is compared with
the current strain increment. The evolution of the histdrthe strain pathG is described
by:

(5.78)

G=¢—clG (5.79)
The parameter determines how much the history efcontributes to the evolution d&.
The strain path change indicator then reads:

_ G:é¢
Gl &

Figure 5.17 shows the results of a strain path that desarivesse loading and orthog-
onal loading. The indicator clearly captures the revegse (—1) and orthogonalg = 0)
loading. After continued deformation in the new directiarifference is observed in how
the indicator returns t§ = 1. The reverse loading shows a sudden jump badk o 1.
This is due to the evolution of the strain history. With evetgp, the current strain in-
crement is added, with a certain weight, to the strain hystdithough this decreases the
values of the strain history, the direction of the strairtilb@riented with respect to the first
strain path. It requires only 1 increment to change the tdordrom the first to the second
direction, which leads to an abrupt change in the sign of treérspath indicator. In the
orthogonal strain path change, tthieectionof the strain path history is changed gradually
to the current strain path. This shows in the response ofnitlieator: it gradually returns
to £ = 1. The value ofc defines the rate at which the indicator returns back te 1.
Hence, a sharp strain path will always be noticed; a gradtaihgpath change can only be
detected if the history of the strain path is so large thatlitdescribes the first strain path.

§

(5.80)

The influence of the step size is depicted in Figure 5.18. Bitioms with a large step
size (Aeeq = 2 - 1072) and with a small step size\eeq = 2 - 107*) were performed.
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Figure 5.17: The influence ofon the strain path change indicator. The strain incremethisise
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Figure 5.18: The influence of different step sizegavith ¢ = 5. Dashed linesAgegq = 2.107%
and solid linesAgeq = 2 - 1072

The figure shows that the strain path change indicator vdarate experiment with the
large increments correspond with the indicator valuesutaled for the simulation with
the small increments. The curve themselves are differem tal the large intervals in the
simulation with the large increments.

Figure 5.19 shows the strain path change indicator (with 10) for the experiments
on DCO06 with orthogonal strain path changes (Section 4 Bg. ildicator shows the same
trend for all the experiments, but the minima of the funcsidiffer depending on the sharp-
ness of the strain path. The sharpest strain path changé)tess a minimum of = 0.31,
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Figure 5.19: The strain path change indicator applied t@#periments on DC06 with orthogo-
nal strain path changes,= 10.

whereas test 1 with a very gradual strain path change showahia 8fé = 0.55. The or-
thogonal test with elastic unloading is characterised bglaevofé = 0, which represents
a true orthogonal strain path change. From this it is coredutiat a distinct difference in
the indicator appears when orthogonal strain paths aréeappith different “sharpnesses”
in the transition. The indicator makes clear distinctiond aence can be applied in full
simulations. If the values remain in the regiontof 1, it can be assumed that a material
model with isotropic hardening is accurate enough for theutation investigated. When
—1 < & < 0.4, the material will undergo an orthogonal or reverse straith ghange. In
these situations the material may show strain path seadighaviour, and an advanced
material model should be used. For strain path changes where-1, only kinematic
hardening is required.

The strain path change indicator presented here can quarstifain path change. Inthe
above, DCO06 was used to define the boundaries for the stréitpange indicator, which is
based on an experimental study. However, if the mechanétedour is unknowri,e. the
response to cyclic and orthogonal loading has not beenrdeted, the strain path change
indicator can still be employed. It indicates whether aistpath change occurs, and hence
whether experiments with cyclic or orthogonal strain pdtarges should be performed.
In other cases this parameter will confirm that the materiadiehused is accurate enough
in terms of strain path dependency.
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5.6 Discussion

In this chapter different models are presented that canprimesextent, predict the strain
path sensitive behaviour. The most elaborate model, thdogo & Hu model, gives the
best description in cyclic strain path changes. In paricuhe transient hardening and
the consequent work hardening stagnation can be descrisedagely, independent of the
amount of pre-strain. In the same fit, the orthogonal expemisiwith a continuous strain
path are also well described. An orthogonal strain pathgéavith intermediate elastic un-
loading, however, cannot be described exactly with thisehdd the experiment, it seems
that the shear stress increases elastically to the peakTdddosiu & Hu model predicts
a high hardening rate after the strain path change whichtisufticiently high to capture
the cross-hardening effect. By allowing a less accuratd fliecyclic experiments, the fit
with an orthogonal strain path change is improved. In thekbgitch model, either a good
fit of the orthogonal strain path change or of the cyclic eitpent is obtained, similar to
the fitting procedure of the Teodosiu & Hu model. The Levkelvitnodel describes the
experiments with the orthogonal strain path change béttar the Teodosiu & Hu model.
In the Levkovitch model, distortional hardening increaseselastic domain in the latent
direction. Upon an orthogonal strain path change, thestrethe new direction reaches a
higher flow stress, hereby describing the cross-hardefffiegteThis gives an accurate de-
scription of the experimental results. The fit with a goododigion of the experiment with
an orthogonal strain path change gives a poor descriptitieomechanical behaviour of
the experiments with load reversals. A better estimatem€yielic behaviour was obtained,
but the description of the cross-hardening effect was letisfactory. The cyclic behaviour
of the Levkovitch model is dependent on the chosen kinentatidening law, but it is
clear that the Armstrong—Frederick relation is by far nodesurate as the Teodosiu & Hu
model. Additionally, the kinematic hardening model in thevkovitch model reduces the
performance in the orthogonal strain path changes. A battetel for cyclic hardening
within the Levkovitch model is recommended. Both the clealsisotropic and combined
isotropic/kinematic models cannot describe the overshlbsgrved in the orthogonal strain
path change. The combined model gives a better predictiaghercyclic tests than the
isotropic model, but this is still not as accurate as the dsad& Hu prediction.

For use in large scale deep drawing simulations, the moti=slg show that accuracy
comes at the expense of more computation time. The Teodoslu &odel is extensive,
with a large system of equations that need to be solved. Thikové&ch model is more
economic, but its predictions are not as good. Isotropickimeimatic models require little
computation time, and besides, they require a small set rafnpeters that can be deter-
mined easily. The Teodosiu & Hu model and the Levkovitch n®dequire, as well as
the monotonic experiments, tests with orthogonal strathgto fit their parameters. Ad-
ditionally, the parameter fit becomes more laborious. Thgreer has to choose which
material model is suitable for the process simulated. Thigae can be checked after the
simulation with the presented strain path change indica®oill, for effective use of the
indicator some knowledge about the mechanical behaviaeqgired. Hence, the mono-
tonic experiments have to be extended with cyclic and odhagexperiments. However,
the mechanical behaviour is then restricted to the obsensbn the presence of strain
path change effects.
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In the following chapter, the material models discussee laee evaluated in full deep
drawing simulations. The outcome of the simulations arepamed with actual measure-
ments on the process. This will give an indication of the alddsue of the strain path
dependent material models.






6. Validation

This chapter discusses the validation of the presentedialatedels by comparing model
predictions with biaxial experiments and a deep drawingeerpent. Biaxial experiments
with continuous tensile deformation and cyclic shear, se&ti@n 4.4, provide strain path
dependent experiments that can be used to validate theiatatexdels. In the initial
monotonic part of the experiments, the yield criterion deises, via the direction of plas-
tic flow, the ratio between tensile and shear stresses. Tihé8+nd Vegter yield criterion
are assessed via these deformation modes. The completéneapt including load re-
versal in shear, under tensile deformation, requires anrateprediction by the hardening
laws. The Teodosiu & Hu model, the Levkovitch model with ispic/kinematic hardening
and the classical isotropic/kinematic hardening modelatielated using experiments on
DCO06, AA5182 and H340LAD.

To demonstrate the applicability of the material models iea product, the so-called
“cross-die” product is used. This semi-academical deewidgaproduct is used to inves-
tigate different aspects of deep drawing. In this researchused to show the application
of the strain path change indicator and the different ptais of the material models.

6.1 Biaxial experiments

The combined tension—simple shear experiments were pgegbierSection 4.4. A constant
plane strain deformation is applied and meanwhile cychigpdé shear is imposed on the
sample. The applied strain path change varies dependingeoarhount of plane strain
deformation. The tensile deformation is a continuous pssckut the shear deformation is
reversed. In practice the strain path change cannot beealpgtliictly, because of limited
stiffness in the test equipment. In the absence of simplarstige tensile deformation
constantly increases. This smoothes the strain path changeme extent. Figure 6.1
presents the stress development during an experimentdiicgdo an isotropic hardening
model. Figure 6.1(a) shows the evolution of the stressesumed in an actual experiment
on H340LAD (test 1 in Figure 4.11(c)). The stress path in sadest is explained in
Figure 6.1(b) with a prediction of the stress evolution byisatropic hardening model.
Starting at zero stress, the stress increases elastioallgth shear and tension tp. At
the initial yield surfacedyo), the stress state enters the plastic regime and work hiaglen
appears. The plastic regime also inducesrasspath change, due to the different stress
ratios for elastic and plastic deformation. As the streatesteaches, the simple shear
deformation is reversed. Meanwhile, the tensile deforomationtinues. The stress state
“crosses” the elastic regime, while the tensile streskistiteases. This requires only a
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Figure 6.1: The experiment with cyclic shear under tensiorH840LAD explained with an
isotropic hardening modelt; .5 denote the characteristic points in the stress—strain
curve.

small strain and it is represented in the stress—strairedwy\a sharp increase and decrease
in tensile and shear stress, respectively. At the oppasiteds the yield surface,, atts,

the direction of plastic flow dictates the stress state. Thisses a shift across the yield
surface towardss. In the model, this would only require a small amount of strdiut

in practice, the used strain is relatively large. As monmdardening is resumed, with a
constant direction plastic flow, the stress should incragsin. Indeed, the measured shear
stress shows this trend, but the tensile stress remainsan@@ss constant. Eventually, the
stress state reache¢s ats.

The predictive performance of the material model duringdlael change is dominated
by the hardening model. The calculated stresses for theoBaon& Hu model, the Lev-
kovitch model and the classical isotropic/kinematic haidg model are compared with the
stresses for this experiment in Section 6.1.1. The matpameters used can be found
in Appendix A. The strains that are measured in the expetisnare used as input for
simulations of a single element test inEXA. The experimental noise on the strain data
was removed by smoothing. Especially when the stress isirltstic regime, the stress
calculation magnifies the effect of noise. This is also cbersd in the next sections.

The Hill'48 and the Vegter yield criterion are assessed whthfirst stroke of the ex-
periments {y - £;) in Section 6.1.2. In the model, the ratio between the teraild shear
stresses depends on the position of the stress state oneldesyiface, which in turn is
determined by the direction of plastic flow. Hence, a yieldaee that describes the mate-
rial accurately, predicts the correct ratio between thsiterand shear stresses. It is noted
that in the fitting procedure of the material models, bothplame strain tension test and
the simple shear experiment are used. Good results wersmetitaand hence, the ratio
between the stress is only dependent on the yield surface use
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6.1.1 Hardening laws

In this section the performance of the Levkovitch, the Teid& Hu, and the combined
isotropic/kinematic material models are assessed by mafasimulations of the experi-
ments with tension—cyclic shear. In all material models,¥agter yield criterion is used.

DCO06 In Figure 6.2 the results of the simulations with DC06 arespréed. The experi-
ment is presented in Figure 4.9, test 1. The initial sheaord&tion is well described by
all material models, see Figure 6.2(b). The Teodosiu & Hu @hbds the best performance
here. After the load reversal, the Teodosiu & Hu model pitsdin initial yielding that is
close to the experimental results, but after the transiéttsa work hardening stagnation is
predicted. This is not observed in the experiments. Both éwkovitch and the combined
isotropic/kinematic models show earlier yielding, witletbombined isotropic/kinematic
model being almost on top of the experimental results. Theil stress curve is best
represented by the Teodosiu & Hu model. It follows the ihgtaess curves and shows a
decreasing stress after the strain path change. Althoughtibss level is not completely
matching the experiments, the model gives similar resiBisth the Levkovitch and the
combined isotropic/kinematic hardening model cannot igtetie phenomena in the ten-
sile direction. The tensile stress after the load revesstdd high for both models. They
do not detect the strain path change, and predict an inagasnd in the tensile stress.
Additionally, the distortional model gives a stronger ddian in the initial tensile curve.

Figure 6.2(c) shows the results of the simulations in stegegce. Again, the pre-
straining of the material is similarly described by all mtzdeAfter the load reversal, the
stress state moves through the elastic region and enteptattec regime again. The slope
of the stress paths through the elastic region from the sitiouls deviate from the slope
measured in the experiment. This is due to the small straireinents that cannot be mea-
sured accurately during the actual measurement. And beadiuhe material models use
the same model to describe elastic behaviour, the slopdseafinulations correspond.
The combined isotropic/kinematic model keeps track of tness curve until the strain
path change. After that it starts deviating from the experita. The Levkovitch model
overpredicts the tensile stress before the strain pathgehand is far from the experimen-
tal values. As the stress state reaches the plastic regiane, sige models predict a different
behaviour. The combined isotropic/kinematic model déswia sharp transition from the
elastic to the plastic regime, which is indicated by the suddhange of the stress path.
The Teodosiu & Hu model also predicts a kink in the stress pathe stress state becomes
plastic again. Right after that the material deviates froewtield surface shape and shows
a path that gradually turns to shear. After that the strefislpaps back, hereby translating
to the origin of the axes. It seems that the work softeningt, ilnnormally observed after
an orthogonal strain path change is causing softening imstoéss components. Although
the stress—strain curves described by Teodosiu & Hu in Eigu2(a) and 6.2(b) show a
good correspondence, the results in stress space are &egatac The Levkovitch model
describes the trends of the experiment in Figure 6.2(c),vieell in absolute values this
model is far from the experimental results. Clearly, if thess curve described by the
Levkovitch model would be shifted 80 MPa to the left, the Hesaf this material model
would be good.
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Figure 6.2: Simulation results of the biaxial experimenfs206 with the Vegter yield criterion.
The legend in figure (c) holds also for figures (a) and (b).

AA5182 In the experiments performed on AA5182 in Chapter 4, it weseoled that the

mechanical behaviour of AA5182 is not strongly dependerstaain path changes. Also
the experiments with intermediate elastic unloading indtthogonal strain path change
show that the stress in the new loading direction gradualihwerges to a saturation rate.
Here, test 2 from Figure 4.10 is simulated. The shear curvEgure 6.3(b) show a similar

trend. None of the material models can capture the trankintening in shear after the
strain path change. Eventually, the models catch up witlstiear curve. In the tensile di-
rection, the models predict peaks in the curves that areehifplan the experimental values.
After that, a decrease in tensile stress is predicted wélsthain path dependent material
models showing the largest decrease. It is noticed thatl#ssical isotropic/kinematic
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Figure 6.3: Simulation results of the biaxial experimentf&5182. The legend in figure (c)
holds also for figures (a) and (b).

hardening model describes the stress level exceptionally ivhe decreasing trend in the
tensile curve after that is not captured by the models.

Figure 6.3(c) shows the results in stress space. In contigistthe predictions for
DCO06, the material models all predict approximately simtil@haviour. In the experiment,
after the strain path change, the stress state seems totenigraugh the elastic regime,
which can be concluded from the constant slope that is destriThen, the stress state
deviates from this slope and slowly turns to shear. It sedinad,in this experiment, the
material is migrating closely along the yield surface. Ia #imulations, the stress state
does not migrate through the elastic regime, but transtetexsit, hereby describing a fluent
arc from tension—positive shear to tension—negative stirrabably, the strain increments
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that are used for the deformation path show a deviation andecthe stress path in the
simulations to follow the yield surface instead of crosghmgelastic regime. The combined
isotropic/kinematic hardening model describes a kink sgtress path at the moment that
monotonic hardening is resumed. The strain path dependsgtial models by Levkovitch
and Teodosiu & Hu describe similar behaviour to the combisetiopic/kinematic model
at the moment monotonic hardening is resumed. Only herésahsition to the monotonic
hardening is described slightly more smoothly with theistpath dependent models. Itis
expected that stress curves from the strain path depenastgiswill not deviate strongly
from the curve described by the combined isotropic/kingrtedrdening model, because
the models were fitted to experiments that show limited stpath sensitivity.

H340LAD In Figure 6.4(b) it is observed that the combined isotrdgie@matic model
performs badly in the initial shear curve. As the shear camepbis activated, its stress
level remains at a constant level. After the load reversamall dip is observed after
which the shear curve again remains almost perfectly cohste tensile curve also re-
mains at a level that is far below the measured stress cuhie nfodel with the current set
of parameters cannot represent the material accurately.L&hkovitch hardening model
gives a better prediction of the experiment. The tensileeis accurately described, and
even the initiation of the monotonic loading in the new dii@e is captured. The shear
curve shows a small overshoot after the load reversal, bud¢heral trend is captured with
the Levkovitch model. It is noticed that in the shear stregsin curve all the models show
a small overshoot after the load reversal. This indicatasttihe deformation description
is not accurate enough. The Teodosiu & Hu model is also caepafldapturing the char-
acteristics of this experiment. The shear curve is captrekdively well, but the tensile
component only captures the trend of the stress developriantre 6.4(c) shows the re-
sults in stress space. The experiment shows that the stnessured in the experiment,
translates through the elastic domain, which is indicatethb linear slope after the strain
path change. The simulations however, show that the stragsraigrates across the yield
surface. The combined isotropic/kinematic model and th&aetch model have a similar
trend when translating over the yield surface. The Leviabvinodel however, shows a
larger shape of the yield surface, which is attributed todbminant contribution of the
isotropic hardening model in the Levkovitch model. The dation with the Teodosiu &
Hu model describes a part of the load reversal where thessdtate is in the elastic regime.
As the monotonic hardening is again resumed, all the modsdsribe a confused stress
path. This is attributed to the noise on the deformation inpeicause all models describe
this behaviour.

6.1.2 Yield criteria

The initial monotonic deformation of the experiment is a tdmation of tensile and shear
deformation. The first derivative of the yield criterion éehines the direction of the plastic
flow. This fixes the stress state in the model. The predictfothe ratio between shear
and tensile stress indicates the accuracy of the yieldriznite For all the simulation, the
classical isotropic/kinematic hardening models were used

Figure 6.5 shows the results of the simulations of the thrge@ments. In all the



6.1 Biaxial experiments 109

~ 500 —_
g E 200
2 400 >3
[2] [}
0
o 300 S 9
2] 7]
2 200 ®
2 2
g 100 @ —200 7
0
0 0.05 0.1 0.15 0.2 -0.2 -0.1 0 0.1 0.2
tensile strain (-) shear strain (-)
(a) Tensile stress—strain curves. (b) Shear stress—strain curves.
200 1
o 100+
o
=3
2
g 0
= )
o K
2 100
(2]
experiment
-200 [ e iso./Kin.
----—---—- Levkovitch
***** Teodosiu & Hu

0 100 200 300 400 500 600
tensile stress (MPa)

(c) The curves in stress space.

Figure 6.4: Simulation results of the biaxial experiment8#0LAD with the Vegter yield cri-
terion. The legend in figure (c) holds also for figures (a) djd (

simulations it is observed that the stress—strain curvesiat smooth functions. This is
due to the use of the strain measurement in the experimené t®@wmoothing of the
strain input, the “sharp” edges of the strain signal are ielited, but the effect of noise
is smeared out over the entire strain path. This leads tahtlliwavy strain path, which
is reflected in the stresses that show changing trends. lergemone of the simulations
correspond exactly with the experiments. The flow curvedipted for AA5182 are not far
off, but still the flow stresses are 15-20 MPa too high in theasleurves. The tensile curves
correspond well; the Vegter curve in particular seems tduwrephe behaviour well. The
simulation with DC06 shows a good prediction for the sheaveubut the tensile curve
was not captured by any of the models. H340LAD was not cagtaceurately for either
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stress components. This material also shows a delayedrtiagdafter it has reached the
yield limit. Both yield criteria underestimate the tensiled shear stresses. For the tensile
direction, the Hill'48 and Vegter criteria predict the tdastress at the same level, but the
values are almost 50 MPa of from the experimental curve. ®ishear curve the same
holds, except that the Vegter description shows a largematish with the experiments.

Both the Hill'48 and Vegter criteria cannot accurately captthe stress ratio in tension
and shear in the experiments. The Vegter criterion howevaniadvanced criterion, that
uses four experiments to fit the model. It would be reasontbéxpect that the Vegter
yield criterion would be able to describe the experimentsdme extent. For none of
the materials is this achieved. Furthermore, the resulthefsimulations with the two
yield criteria describe stress paths that coincide to soxteneé The simulations on the
experiment with H340LAD shows a 25 MPa difference in thereated shear stresses.
The maximum difference between the stress prediction amdntbasured stress is, in the
case of H340LAD, approximately 40 MPa. Hence, the diffeecietween the predictions
of the simulations and the actual measurement is larger ttieuifference between the
individual predictions of the simulations. This leads te ttonclusion that using the strain
measurement in a simulation to compare the performanceetd griteria is not a good
validation tool. If the measurement of strain could be perfed more accurately, this
validation procedure could be used for validation of yiditecia.

6.1.3 Discussion

In this section simulations were performed with the defdiamameasured in a true biaxial
experiment applied on a single element. It is observed ithalsimulations, independent of
the material model, or the material used in the experimbatthe results of the simulations
show a non-smooth stress path. This is attributed to theunedstrain that is used as an
input for the simulations. Smoothing of the strains was usedptimise the simulation
results, but the result is not satisfactory. The resulthefdimulations can be improved,
if the strain measurement in the experiments is improvedCHapter 3 it was found that
the accuracy of the strain measurement of tiENTE BIAXIAL TESTER is approximately
5-10~*. This value allows for measurements in the elastic regionigzlearly not accurate
enough to use as input for FE-simulations. Hence, the ceiwla that are drawn from the
simulations have to be considered carefully.

When considering the yield criteria, the Hil'48 and the Yagmodels perform equally
well. It was observed that these models predict stressastnaves that almost correspond,
but the experiment is not always well represented. This ggotyi that the used method is
not accurate, but can also indicate that the used concepieiticriterion is not necessarily
adequate for this particular deformation.

The materials used to validate the material models varyain #train path dependency.
The mechanical behaviour of DCO6 strongly depends on tamngpath, whereas AA5182
shows limited sensitivity. The latter is described well ttiytlee material models, because
the simulations differ only in the description of the straiath effects. The mechanical
behaviour of the DCO06 is only captured with the Teodosiu & Hodel with moderate
accuracy. It captures the phenomenon, but cannot deshelsresses quantitatively. The
distortional model describes the H340LAD better than the tther models. It captures
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the trends in the stress development. The isotropic/kitiemaaterial model does suffice
in the case of AA5182, but materials that are more sensitigraiin path changes, cannot
be accurately described with this model. Also a qualitadi@scription fails.

6.2 Cross die

To asses the material models presented in Chapter 5, siondatere performed on a true
deep drawing process. The selected product is the “cro$sadieoduct made with a cross
shaped die. The final productis depicted in Figure 6.6. Ttddgpct was initially developed
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Figure 6.6: The cross die product.

as a tool to judge the formability of sheet metal (Atzeetal., 2004). It represents true
forming processes better then square or circular cupsubeddifferent deformation modes
are activated in the deep drawing of the product. The aim dsda a product to a height
of 60 mm with the largest possible blank dimension, withawt aigns of necking. The
used blank must be square and the maximum blank size is dendtte the Cross Die
value. DCO6 is used here for the assessment of the materid¢lmdecause it shows
the strongest strain path sensitive behaviour. The exeatsperformed in Chapter 4 are
performed with the same batch of material as used for thesatizss The deep drawing
experiments were performed at Corus PAC.

The blank holder force (BHF) used for the cross die experisweas determined with
a fixed ratio:

BHF = 3/4Rnt (6.1)

WhereR,, indicates the maximum stress anthe thickness of the blank. The maximum
stress is indicated witlR,, and the thickness with. Hence, the blankholder force in-
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creases with increasing thickness and higher strengthordlotg to Equation (6.1), with

t = 0.7mm thick, andR,, = 300MPa the target blankholder force was determined to
157.5kN. Experiments were performed and showed that a blithksides of 295 mm rup-
tures completely. The experiment with sides of 290 mm stitiveed some mild necking,
and was hence rejected. A blank with sides of 285 mm, the fallvihg depth (60 mm)
was reached without necking. This blank size was used inithlation of the process.

A hydraulic support was used to apply the blankholder fordéhile developing the
test equipment it was found that the tools deformed eldktidaring the deep drawing.
To this end, 8 force sensors were used in a square setup taraghs blankholder force
during the forming. Ideally, the 8 force sensors would camyeven load, but mostly a
non-homogeneous distribution of force was measured. Tdwekhblder force in the ex-
periment was found to be 17.4-22.2kN per load cell and thed td&nkholder force was
156 kN. For experiments where the spread in the 8 force sigrdhrger, the symmetry
of the deformation could be deteriorated. This would regaicomplete simulation of the
cross die, rather than only a quarter simulation. Additilgntne different segments of the
blankholder require individual force control, dependingtbe measurement. Here, it is
assumed that the forces are sufficiently balanced.

Firstly, the process was studied by means of a simulatioh antisotropic hardening
model. The characteristics of the process and the calounlatie discussed. After that,
simulations are presented with the Teodosiu & Hu model, tekbvitch model and the
combined isotropic/kinematic hardening model. Conclosiare drawn based on their
performance.

6.2.1 The deep drawing process of the cross die

This section discusses the characteristics of the deepriygnrocess of the cross die. The
deep drawing process of this product is analysed by means&f simulation. In this
simulation, only a quarter of the product is used, due to sgtmyrof the product and the
material. The blank is meshed with 3072 linear discreterstizagular elements (Batoz
and Lardeur, 1989) that have an average length of 4 mm. Riggriation points across the
thickness were used. The isotropic Swift law was used, coatbwith the Vegter yield
function. The parameters for this material model can bedanppendix A.

The influence of friction in deep drawing processes is noagivdetermined. From
measurements it is known that the friction coefficient~ 0.13. However, due to the
lubrication this value is not fixed, and does not necessgiilg an accurate result in the
simulations. According to the manufacturers of the lubricdhe friction coefficient is
0.13 for normally lubricated sheet. In the presented erpent, less lubrication is applied
to enhance the reproducibility. To obtain some feelingierdependence on friction, sim-
ulations were performed with different friction coeffictesr{ju = 0.12, 0.13, 0.14, 0.15,
0.16) to fit the force—displacement curve. The results are degict Figure 6.7. From
these results it is concluded that the Vegter model combivigdthe Swift hardening law
is a conservative material model. Independent of the usetibfn, all the simulations pre-
dict force—displacement curves that are lower than theraxpatal curve. This already
appears at the onset of the deformation, at 10 mm punch daplent. Furthermore, in the
experiment, the force reaches a constant level at a pundh dég5 mm, but the simula-
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tions predict a maximum force at 50 mm far= 0.12. A higher friction results in a shift

of the maximum to a higher depth. According to Figure 6.7 ftltion should be at least
0.16. A friction coefficieniu = 0.14 is chosen because it is still close to the specification
of the lubrication manufacturer, and because the simulatfmw that a high friction co-
efficient is required. This friction coefficient is used fbetremainder of the simulations,
despite the relatively poor description of the punch fofidee following will show whether

a full strain path dependent material model will improve pleeformance.

To assess the strain path changes that occur in the deemdrafvihe cross die, the
strain path change indicator presented in Section 5.5 wed. uhe memory constant for
the indicator was set to = 10.0. The comparison with the experiments with strain path
changes showed that a value for the strain path change indica 0.4 indicates that the
traced strain path will show mechanical behaviour that oabe predicted with a regular
isotropic/kinematic hardening model. In Figure 6.8 theueabfé in the mid-plane of the
sheet is shown. In this picture it can be seen that two regioasgery 1/8 of the product
experience strain path changes. These two regions are ear/dndicated in Figure 6.6.
Region (1) appears at the draw-in. As the material is putiactds the die cavity and flows
into it, the strain path changes. This is easily understobdnihe flow of the material is
considered. As the material is clamped between the die antdlimkholder, but still far
away from the die cavity, it is pulled towards the die cavity.this process, the material
experiences a tensile strain in the direction of the cerftiieeodie cavity and a compressive
strain perpendicular to that. As the punch goes deepemrtaisrial enters the die cavity.
However, at the joint between the two arms of the cross, thtenahis drawn into the
cavity on both sides, while the tensile strain remains. leéndhe transverse direction, the
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Figure 6.7: Different friction coefficients in the simulati of the cross die.
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material experiences reversed loading. In Figure 6.9 thilition of equivalent plastic
strain is displayed. It shows that in region (1) where thaistpath change occurs, the
equivalent plastic strain can reach a value of approxim&@lo. Figure 6.10(a) shows
the evolution of the individual strain components for a painregion (1) that has only a
limited amount of equivalent plastic strain. The strainhpeattange occurs aﬁq = 5%,
where all the development of all the in-plane componentsearersed, leading to negative
value for the strain path change indicator. The value of tharspath indicator shows a
minimum até = —0.2, which can classified as an orthogonal strain path change.

The strain path change that is indicated at region (2) is siobaious as the strain path
change in region (1). With increasing punch displacembetmaterial is pulled away from
under the die towards the flange. However, this effect igivelly small and the strains that
appear are also low. Figure 6.9 shows that the equivalestiplstrain is approximately
10%. Hence, it may be that the strain path change effects robgppear, because only
little strain is accumulated. This is elaborated in FigutEO6where the strain components
and the strain path change indicator are displayed. Thim $tistory parameters in region
(2) (Figure 6.10(b)) show a monotonic development untilraistof 5% is reached. At
that level, only the shear component shows a true change.c@iises the excitation of the
strain path change indicator to a valuetof 0.2. According to the definition of a strain
path change for DC06 in Chapter 5, a strain path dependegtialanodel is required to
describe the mechanical behaviour in region (2).

From the investigation of the results of the strain path gleandicator it seems that a
full strain path dependent material model is required. Thimost convincingly indicated
by the strain path change indicator in region (1).

6.2.2 Simulations

In this section three simulations are discussed. The psquammeters are equal in all the
simulations, but three different material models are u3eddosiu & Hu, Levkovitch and
the isotropic/kinematic hardening model. The maximum pudisplacement is 60 mm
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Table 6.1: The calculation times for the cross die. The satmhs with marked %) material
models were terminated.

model CPU time (h) stress update (s) no. of steps no. of iter.
isotropic 1.4 1.3 600 1
isotropic/kinematic 1.4 1.3 600 1
Levkovitch* 9.5 34 600 3
Teodosiu & HU 60.0 37 1688 4

and we aimed for a step size of 0.1 mm displacement per load &eth the maximum
unbalance and the displacement criterion were used tondieterconvergence in the load
step. The relative unbalance force criterion was sét-tb0~* and the displacement ratio
criterion was2 - 1073, The unbalance in the forces is set rather strictly, bec#usas
observed that this stabilises the calculation and redineasdise in the force—displacement
curve.

The combined isotropic/kinematic hardening model perfoloetter than the Levkovitch
and the Teodosiu & Hu models when the robustness of the rabteddels is considered.
It was observed that the Teodosiu & Hu model is very sensititee process parameters.
From the nodal unbalance distribution it was observed #mibn (1) causes problems for
the overall convergence of the process. Hence, for the firsir the punch displacement
is processed smoothly without step size reduction, beddwesmaterial is not drawn into
the die and no strain path changes occur. After that, therrabhtmtering the die cavity
experiences a strain path change. To accurately descelaebhanical behaviour in this
process, small load steps are required. Additionally, treglex system of equations that
are required for the stress update in the Teodosiu & Hu madglire small load steps to
prevent divergence within the material model. The averaége size decreases to a min-
imum of approximately 0.015mm with this model. Experimewtth different process
settings showed that the Teodosiu & Hu model in particulaoisrobust. The Levkovitch
model also requires smaller steps as the material in redipar(ters the die cavity. The
stress update of this material model is more robust undainsprath changes and larger
load steps are used, compared to the simulation with theoEdod Hu model. Still, step
size reduction is required for this material model, whictiuees the average load step to
approximately 0.05 mm.

In Figure 6.11 the resulting force—displacement curvepaesented. The robustness
of the classical material models is reflected well in thispra The isotropic and com-
bined isotropic/kinematic hardening models all finish thmawation until the end of the
punch displacement. Neither simulations shows any sigrecking. The simulation with
the Levkovitch hardening model reaches a punch displaceaiet?2 mm after which the
simulation terminates due to a singular matrix. The Tead&Hu model here reaches a
maximum displacement of approximately 42.5 mm, after whighstep size becomes too
small and the simulation was terminated.

From Figure 6.11 it is recognised that the material modebhsignificant influence on
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the force-displacement curve. The results of the simulatiaith strain path dependent ma-
terial models (Teodosiu & Hu and Levkovitch) are relativelgse together. Furthermore,
these models predict that the required force is drastitddiiger than the prediction of simu-
lations with isotropic and combined isotropic/kinematizdening models. The prominent
difference between the strain path dependent models amdthkined isotropic/kinematic
hardening models is the description of the mechanical iebain an orthogonal strain
path change. The Teodosiu & Hu and Levkovitch models predéttarp increase in stress
whilst the combined isotropic/kinematic material modeddticts a lower stress compared
to the proportional strain path, see Figure 5.8. In Secti@ml6the strain path change in-
dicator predicted that strain path effects are presentisnpfocess, and hence a full strain
path dependent material model is required. This is in agee¢mith the observations in
Figure 6.11. Still, all the material models predict a fordisplacement curve that is lower
than the actual measurement.

Figure 6.12 shows the distribution of the equivalent ptastrain at 40 mm punch
displacement for the 3 different hardening models. Thisrégadicates that the mate-
rial models affects the distribution of strain. It showstttiee simulation with the com-
bined isotropic/kinematic hardening predicts a strairtridigtion that is more localised
than the 2 strain path dependent material models. The dimubaith the Teodosiu & Hu
model and the combined isotropic/kinematic hardening rhsldew a similar distribution
of equivalent plastic strain. Only between the arms, aldrgline of symmetry of the
simulation, a local area with more equivalent plastic stiaipredicted by the combined
isotropic/kinematic material model. This is also predichy the simulation with the dis-
tortional hardening model. In contrast with the other twodels, the distortional material
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Figure 6.11: Force—displacements curves from the expetiara simulations.
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model also predicts more strain on the two corners on the afrttee cross. The simu-
lations with the distortional and Teodosiu & Hu models boslvdna more uniform spread
of the equivalent plastic strain, whereas the combinedapat/kinematic model predicts
more localised strain. This can be explained by the matioialinto the die cavity. Mate-

rial that experiences an orthogonal strain path change wharing the die cavity shows
a higher stress in the new loading direction. As a resultsthreounding material is forced
to absorb more deformation since the stress level is notgsthere.

The required CPU times in these simulations show a greardifice, see Table 6.1. It
is noticed that these times were recorded for the experiieritigure 6.11, until the sim-
ulation was finished or terminated. Clearly, the 2 simplestlets are fast in the processing
of the cross die simulation. Both the Levkovitch and the Tesiul & Hu models require
more calculation time for the complete simulation. The Laitch model requires this
time for the stress update, and for two extra iterations ad ktep. The Teodosiu & Hu
model requires only a little more time for the stress updad@ the Levkovitch model. The
large computation time for the simulation with the Teoda®itdu material model stems
from the large number of load steps that is required. The @siodk Hu model requires a
smaller step size to preserve global convergence of theaiomi.

The large difference in processing time between the siiaumatith the Teodosiu & Hu
and Levkovitch model may originate in the way in which thes$ evolves during orthog-
onal hardening. In the Levkovitch model, upon a strain patinge, the stress translates
across the yield surface to the new stress state. In thiepsothe yield surface changes
slightly due to distortional hardening and the hardenirangfes the size of the yield surface
mildly. Hence, to predict the overshoot in an orthogonalistpath change, there are no
large local gradients that can spoil the convergence. ofélodosiu & Hu model, upon an
orthogonal strain path change, a large hardening rate igrezhto describe the overshoot
in the new loading direction. Large load steps will accogtirtause divergence at a global
level. Hence, if indeed a larger gradient is present in thigogional strain path changes, the
Teodosiu & Hu model will require smaller load steps to ddsethe deformation process.

6.3 Conclusion

In this chapter 2 experiments are used to validate the nahtmodels; the experiments
with tension under cyclic shear, and the deep drawing of thescdie. The tension un-
der cyclic shear experiment was difficult to evaluate beedhe input for the validation
is an actual strain measurement, that causes conside@béeat the output. For the ma-
terial that is most sensitive to strain path changes, it wasd that the Teodosiu & Hu
model represents the trends in the stress evolution bestlL&Vkovitch and the combined
isotropic/kinematic hardening models actually predigh@ging stress evolutions.

The deep drawing of the cross die is a representative of afdragng process. The
strain path change indicator was used to judge the semgitif/this process to strain path
effects in the material. It was found that this process iddg®ws strain path changes
that need to be taken into account. The material models anpaced on the basis of their
predictions of the force—displacement curve. The Levibwinodel gives the best predic-
tion, but the difference with the prediction of the simubatiwith the Teodosiu & Hu model
is small. The simulations with the isotropic and combinedrizpic/kinematic hardening
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models differ considerably from the experimental resuitewever, the robustness of the
strain path dependent models is not satisfactory. Botngtegth sensitive models could not
finish the simulation completely. This may be due to the isg#tiof the overall simulation,
but this does not motivate the use of these models. The emtjphocessing times are ex-
ceptionally large for the Teodosiu & Hu model, as it is appmoately 60 times larger than
the simulation with a classical hardening model. The prsiogstime for the Levkovitch
model is 6 times as large as the calculation with the clakkar@ening model. Based on
the calculation time and the accuracy in the prediction effttice—displacement curve, the
Levkovitch model provides the best solution for simulasiari processes with strain path
changes.






7. Conclusion

In this thesis the mechanical behaviour of sheet metal stédagjeo non-proportional strain
paths was studied. The research was divided into threeeliff@arts; the WENTE BIAX-

IAL TESTER and the validation of its results; the experiments to deireerthe mechanical
behaviour of the material; and the material models and tadidation. In this chapter, con-
clusions from the research are drawn and recommendatierggwen for further research.

Twente biaxial tester

The unique biaxial test equipment is crucial in this reseabecause the investigation on
the mechanical behaviour of sheet metal is carried outyseléh this equipment. The
functionality of the test equipment was assessed on twatgdine accuracy of the mea-
surement and the control of the deformation in the sample.

To judge the accuracy of the stress—strain measuremermtss$wes were considered:
the accuracy of the determination of the stress and stnaéhttee homogeneity of the defor-
mation area. The strains were calculated with a least sgtiarbased on the displacement
of dots in the deformation area. It was found that the acgucdidhe measured strain
was better than 0.05%. To assess the homogeneity of thae sitedss the deformation
area, digital image correlation software was used to meas$ier complete strain field in
the deformation area. Used in the simple shear test, it sthav®mogeneous distribution
of strain across the deformation area of the sample. The lewenpimple shear domain
(y =~ 50 %) of the WENTE BIAXIAL TESTER can be used to acquire a homogeneous de-
formation of the sample. In plane strain tension, the tersdilain becomes inhomogeneous
after approximately 15% strain. At higher strains, the sarsfips away from between the
clamps, as a result of the accumulated thickness reductitirecsample. The observed
slip depends on the local thickness of the material and te&ipo of the bolts that secure
the sample. Eventually this leads to an inhomogeneousmetmn. The measured dis-
placements in the plane strain tensile test and the simplar$bst were used as boundary
conditions for FE simulations. It was demonstrated thattthe stress can be calculated
by using the measured force and the initial geometry. Cosatean factors for boundary
effects are not necessary.

The deformation of the sample was applied by prescribinglaéements to the ac-
tuators. Because of the relative flexibility of the test fige actuator position does not
accurately control the position of the clamps holding thegla. Especially in experi-
ments with continuous strain path changes, the measud ptth deviates significantly
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from the intended strain path. In this research, forcetfiaeld was successfully applied to
control the strain path.

Material Behaviour

In this work four different materials are examined. All thaterials showed to some extent
strain path sensitive behaviour. AA5182 and DP600 both shevBauschinger effect and
transient hardening after a load reversal. Additionallyrknhardening stagnation appeared
after the load reversal. In the experiments with orthogatrain path changes, neither
materials showed the cross-hardening effect.

H340LAD was moderately sensitive to strain path changes.ekiperiments with load
reversals demonstrated that the work hardening stagretioally turns to softening of the
material. A small overshoot was observed in the experiméhttive orthogonal strain path
change.

DCO06 was most sensitive to strain path changes. Especralliga experiment with
an orthogonal strain path change, the overshoot in strab&inew loading direction was
significant. After the peak, the stress dropped again andecgad back to the monotonic
hardening curve. The experiments with continuous orthafistnain path changes showed
that, if the strain path change is sufficiently “sharp”, tlaeng overshoot in stress is ob-
served as in the experiment with intermediate unloading.okengradual transition of the
deformation direction shows a gradual approach towardsireotonic hardening curve.
In the paper by Wangt al. (2008), it was argued that the mechanical behaviour in an or-
thogonal strain path change is not affected by intermee@iatgtic unloading, which indeed
is proven by the experimental results presented in the curesearch.

Models

A generic return mapping algorithm in matrix-vector fornveds described and imple-
mented in the FE-software IBKA. This model allows for flexibility in using different
hardening laws and different yield loci. The model is preplfor the full 3D representa-
tion and the plane stress situation.

The Teodosiu & Hu model describes a complex algorithm witlvdligion equations
for the stress update. The material model requires 13 rahfmrameters that need to be
determined from experiments with monotonic, cyclic andhogonal strain paths. The de-
scription of the Bauschinger effect, the transient handgaind the work hardening stagna-
tionin a load reversal are accurately described by this i@tmtinuous orthogonal strain
path changes are also predicted well. However, a fit to theraxent with an orthogonal
strain path change with intermediate unloading could ndbbed. The model describes
the overshoot in terms of a high hardening rate, wherea®iaxperiment it seems that the
overshoot is the result of a higher flow stress in the new tiorcThe model proposed by
Levkovitch is a more phenomenological material model amdlwioes isotropic, kinematic
and distortional hardening models to describe differeratirstpath effects. Distortional
hardening is used to describe the effect of an orthogoraihghath change and kinematic
hardening describes the mechanical behaviour in reveoseting. These two models are
decoupled, which makes the fitting procedure relatively.ed$ie orthogonal strain path
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change is captured well, but the simple kinematic hardeniogel cannot describe the
work hardening stagnation and transient hardening effaattware observed in a test with
reversed loading. More accurate predictions of the cyatiedviour should be obtained
when using a more advanced kinematic description like idké&t al. (1995); Yoshida and
Uemori (2003).

The validation of the material models was done with DC06 oeraisacademical deep
drawing process. The presented strain path change indifadaved that, based on a sim-
ulation with isotropic hardening, the effects of straintpahanges have to be incorporated
in the simulation. Indeed, the simulations with the fulbstrpath dependent models give
more accurate predictions. The material models were asbdmsed on their prediction
of the force—displacement curve. The Levkovitch model gigeslightly better predic-
tion of the force—displacement curve than the Teodosiu & Hudeh but both are close
to the experimental results. The isotropic and combinettdpa/kinematic hardening
model under-estimate the required punch force. For aceunaidelling of true forming
processes, the full strain path dependent models give nooteate results. However, the
required calculation times for the strain path dependerdetsoare a large disadvantage.
The Levkovitch model requires approximately 6 times mor&JQifhe, whereas the Teo-
dosiu & Hu model requires approximately 60 times more commguime. Because of the
simplicity of the model, the flexibility in the different mets, and the faster evaluation, it
is recommended to continue the development of material lnddsed on the Levkovitch
model.






A. Material parameters

In this appendix the parameters for the different matedald material models are pre-
sented. The fitting procedure as described in Chapter 5 éstagtetermine the parameters.
The R-values are obtained from Corus.

Table A.1: TheR-values for DCO6.

parameter DCO6 AA5182 H340LAD DP600

Ro 1.85 0.6661 0.9093 0.9490
Rus 2.06 0.7114 1.0287 0.8404
Roo 2.51 0.6011 1.1898 1.1658

Table A.2: The Vegter parameters for DCO6.

0° 45° 90°

Ssh 0.572  0.542 0.500
Sfun 1.000 0.995 0.993
Jos 1.243  1.248 1.246
R-value 1.85 2.06 2.51
Joi 1.153

Joi 1.153

o 0.5 0.5 0.5

Obi 0.77
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Table A.3: Material parameters for the Swift model.

parameter DCO06 AA5182 H340LAD DP600

00 (MPa) 70.0 0.0 134.73 131.9
C (MPa) 510.1 562.5 582.8 820.5
g0 (-) 1.0-10~7 0.010874  0.0260 1.07-10~*
n () 0.3826  0.3250  0.2903 0.2087

Table A.4: Material parameters for the combined Swift Amosg—Frederick model.

parameter DCO06 AA5182  H340LAD DP600

o0 (MPa) 95.0 0.0 0.0 0.0

C (MPa) 300.0 451.8 492.7 732.8
eo0 () 1.0-10™° 2.72-1073  0.322  6.8-1076
n () 0.340 0.2270 0.2284 0.0995
H () 12.25 4.10% 11.4 100
He (5) 766.0 0.1 1240 499

Table A.5: Levkovitch material parameters.

parameter DCO06 AA5182 H340LAD DP600

oo (MPa) 70.0 0.0 0.0 0.0

C (MPa) 349.0 370.0 700.0 592.07
g0 (-) 50-107° 33.107° 5.0-107° 1.3-107°
n(-) 0.2969 0.1821 0.1323 0.135
Co () 15.0 57.23 36.53 13.20
as(-) 40.0 23.48 82.52 14.99
Co () 15.0 4.30 4.00 4.79
HS () 0.0 0.0 0.0 0.0
CL() 11.0 0.54 1.06 1.80

HPE () 0.65 0.82 0.70 0.85




Table A.6: The Teodosiu material parameters.

parameter

DCO06 AA5182 H340LAD DP600

70 (M Pa)
(o 7) (M Pa)
Ss(MPa)
Rs (')

G ()

G ()
Cs(o)

Co (')

Cr (')

np )

n (-)

m (-)
r()

125.0
0.5
238.8
65.0
1.2
50.0
5.42
164.7
44.4
350.0
0.85
0.47
2.85

90.0
50.0
101.1
100.0
24.7
10.5
3.30
235.3
16.5
16.6
1.25
0.36
2.00

150.0
110.0
213.6
49.1
10.0
50.0
13.42
192.5
140.0
35.0
0.50
0.55
3.0

296.0
80.0
250.0
114.27
7.19
40.4
10.07
68.9
94.8
2.0
0.75
0.55
2.99
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