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Summary

Sheet metal forming processes are used to create products that have a high stiffness com-
bined with a small weight. To determine the settings of such aproduction process, fun-
damental knowledge of the mechanical behaviour of the metaland of the process itself is
required. With the introduction of the finite element software a new opportunity for cost
reduction was presented. The finite element method allows for optimisation of forming
process with a computer, instead of with a costly trial and error process in the workshop.
Amongst the various models that are used in this tool, a material model is used to describe
the mechanical behaviour of the sheet. The accuracy of the prediction of the finite element
software is determined by the accuracy of its components. Inthis thesis, the influence of the
strain path on the mechanical behaviour is investigated. Experiments are used to improve
the material models and to improve the overall predictions of the finite element method.

The mechanical behaviour was tested with the TWENTE BIAXIAL TESTER, a unique
test equipment that loads a sheet metal specimen in two directions. Two different chal-
lenges occurred with this test equipment: the strain measurement and the stiffness of the
test equipment itself. For an accurate determination of thestrains in the sample, the mea-
sured clamp displacement is not sufficiently accurate. The optical strain measurement was
optimised for an accurate strain measurement. The strain path changes, applied to in-
vestigate the mechanical behaviour of the sample, also deformed the frame-work of the
TWENTE BIAXIAL TESTER. In turn, this affected the test procedure such, that some exper-
iment were not feasible. An algorithm was implemented to control the deformation in the
test rig during experiments.

In this research, four materials were investigated. They are: mild steel (DC06), high
strength steel (H340LAD), aluminium (AA5182) and a dual phase steel (DP600). The
different experiments showed that the conventional DC06 ismost sensitive to strain path
changes. It showed that upon a load reversal, the flow stress decreases significantly. A
loading direction perpendicular to the initial direction introduces a higher flow stress. Ad-
ditionally, continuously changing strain path changes were applied to mimic a true forming
process. The mechanical behaviour observed in the experiments can be explained with the
evolution of the dislocation structure. In the literature,mechanisms were observed on the
micro-scale that are easily correlated with the mechanicalbehaviour on the macro-level. A
causal effect though, seems hard to prove.

To simplify the implementation of material models, a generic material model was in-
troduced. The scheme used in this model allows for simple implementation of alterna-
tive models. Isotropic and kinematic hardening models wereinitially implemented in this
scheme. Furthermore, two strain path dependent models wereimplemented: the Teodosiu
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& Hu model and the Levkovitch model. The latter describes themechanical behaviour in
a phenomenological way. The Teodosiu & Hu model describes the evolution of the dis-
location structure from which the mechanical behaviour is deduced. Both models show
accurate stress–strain curves, but require more computation time. Additionally, the strain
path dependent models can deteriorate the global convergence of a finite element simula-
tion, hereby increasing the calculation time even more. Themodels were validated by the
simulation of a semi-academical deep drawing product.

Using the full strain path dependent material models requires an extensive set of me-
chanical experiments and experience with fitting procedures to determine the material con-
stants. Hence, using a strain path dependent material modelis only desired when the strain
path changes experienced in the forming process induces mechanical behaviour that can-
not be described with a classical model. To this end, a strainpath change indicator was
developed that quantifies strain path changes and allows itsassessment.



Samenvatting

Plaatomvormingsprocessen worden gebruikt om producten temaken die een hoge stijfheid
combineren met een laag gewicht. Om de instellingen van een dergelijke proces te bepalen
is fundamentele kennis nodig van het mechanisch gedrag van zowel het plaatmateriaal als
het proces zelf. Met de introductie van de eindige elementensoftware werd er een nieuwe
mogelijkheid tot kostenbesparing gepresenteerd. De eindige elementen methode maakt het
mogelijk het proces te optimaliseren met de computer in plaats van in de fabriek waar het
proces handmatig geoptimaliseerd wordt. Onder de grote verscheidenheid aan modellen
die toegepast worden in dit hulpmiddel, wordt het materiaalmodel gebruikt om het mecha-
nisch gedrag van de plaat te beschrijven. De nauwkeurigheidvan een voorspelling van de
eindige elementen software wordt bepaald door de nauwkeurigheid van zijn componenten.
In dit proefschrift wordt de invloed van het rekpad op het mechanisch gedrag bestudeerd.
Experimenten zijn uitgevoerd om materiaalmodellen te verbeteren, en om de gehele voor-
spelling van de eindige elementen methode te verbeteren.

Het mechanisch gedrag is getest met deTWENTSE BIAXIALE BANK , een unieke test-
bank die een metalen testplaatje kan belasten in twee richtingen. Twee problemen kwamen
aan het licht met deze testopstelling: de rekmeting en de stijfheid van de testopstelling zelf.
Voor een nauwkeurige bepaling van de rek in het testplaatje is de gemeten klemverplaatsing
niet goed genoeg. Hiertoe is de optische rekmeting geoptimaliseerd voor een nauwkeurige
rekmeting. De rekpadveranderingen, die zijn toegepast om het mechanisch gedrag van het
testplaatje te testen, vervormde ook het frame van de testopstelling. Als gevolg daarvan
werd de test zodanig beı̈nvloed, dat sommige testen niet mogelijk bleken. Een algoritme is
geı̈mplementeerd dat de vervorming van de testopstelling compenseert tijdens experimen-
ten.

In dit onderzoek zijn er vier materialen onderzocht, te weten: vervormingsstaal (DC06),
hoge sterkte staal (H340LAD), aluminium (AA182) en twee-fasen staal (DP600). De ver-
schillende experimenten toonden aan dat het conventioneleDC06 het meest gevoelig is
voor rekpadveranderingen. Na een lastwisseling daalde de vloeispanning significant. Een
verandering van het rekpad haaks op de initiële richting resulteerde juist in een hogere
vloeispanning. Rekpadveranderingen waarin het rekpad geleidelijk werd veranderd zijn
uitgevoerd om het gedrag in een werkelijk omvormproces te simuleren. Het mechanisch
gedrag wat gemeten is in de experimenten kan uitgelegd worden met de ontwikkelingen
op dislokatie-niveau. Mechanismen die optreden op het microniveau zijn beschreven in
de literatuur, en worden gecorreleerd met het mechanisch gedrag op de macroschaal. Een
oorzakelijk effect is evenwel moeilijk te bewijzen.

Om de implementatie van de materiaal modellen te vereenvoudigen, is er eerst een ge-
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neriek materiaalmodel geı̈ntroduceerd. Het gebruikte schema maakt het mogelijk om een-
voudig alternatieve modellen te implementeren. Isotrope en kinematische verstevigings-
modellen zijn in eerste instantie geı̈mplementeerd in dit schema. Daarnaast zijn er twee
rekpadafhankelijke modellen geı̈mplementeerd: het Teodosiu & Hu model en het Levko-
vitch model. De laatst genoemde beschrijft het mechanischegedrag op een fenomenologi-
sche manier. Het Teodosiu & Hu model beschrijft de evolutie van de dislokatie-structuur,
waaruit vervolgens het mechanisch gedrag afgeleid wordt. Beide modellen geven nauw-
keurige spanning–rek-krommes, maar vragen ook meer rekentijd. Bovendien kunnen de
rekpadafhankelijke modellen de globale convergentie van een eindige elementen simula-
ties verstoren, waardoor de rekentijd nog verder toeneemt.De modellen zijn gevalideerd
met simulaties van een semi-academisch dieptrekprodukt.

Het gebruik van volledig rekpadafhankelijke materiaalmodellen vraagt om een uitge-
breide set van mechanische experimenten, en om ervaring metfit-procedures om de mate-
riaalconstanten te bepalen. Het gebruik van een rekpadafhankelijk materiaalmodel is dus
alleen gewenst als er rekpadveranderingen optreden in het omvormproces die mechanisch
gedrag veroorzaken wat niet beschreven kan worden met een conventioneel materiaalmo-
del. Daarom is er een rekpadveranderings-indicator ontwikkeld die de rekpadverandering
kwantificeert en daarmee beoordeling mogelijk maakt.



Preface

The results of four years of research is presented in this thesis. It fits into a larger scope
on materials research performed in the group of applied mechanics. Already in 1996 it
was recognised that strain path changes in material models were not taken into account.
The basic concepts of the TWENTE BIAXIAL TESTER were developed by Han Huétink,
after which Joop Brinkman started with the actual design. Inthe following years, the tester
was made and the first experiments were performed. Hermen Pijlman based his doctoral
thesis on much of the experiments he performed with the TWENTE BIAXIAL TESTER, and
at the same time he did a lot of development on the hard- and software. After that, a
proposal for another PhD-assignment was prepared togetherwith Corus, to further explore
strain path sensitivity in sheet metal with the TWENTE BIAXIAL TESTER and improve
the material models with the experimental results. The Netherlands Institute for Metals
Research (the current M2i) accepted the proposal and the project was carried out under
project number MC1.03158 in the framework of the Strategic Research Program of the
Materials Innovation Institute (M2i) in the Netherlands (www.M2i.nl).
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for Semih Perdahcıoğlu, with whom I had many discussions about material modelling, cars,
bikes and the differences between cultures during our intermediate-sub-coffee breaks. Also
the conferences that I joined is something that I won’t forget easily; Scotland, Barcelona
and Sweden still bring a smile to my face.

Part of the work presented in this thesis was done at the University of Dortmund in the
group of prof. Svendsen. The work that I did in co-operation with Muhammad Noman,
Clemens Barthel and Bob Svendsen proved to be very useful. Thank you for the nice
discussions and good co-operation! It was also a pleasure tohost Till Clausmeyer in our
group. For helping me out with the million of experiments that I had to do, I want to thank
Ranu van Ruth and Marco Razetto. Joop Brinkman is greatly acknowledged for his support
on the technical side and the interesting technical discussions.

I would like to acknowledge Han Huétink, Ton van den Boogaard, Timo Meinders
and Ashraf Hadoush for carefully reading the manuscript andhelping me to improve its
contents significantly. Additionally, I would like to thankKatrine Emmett for correcting
my thesis with respect to my very personalised English language.

My parents also belong on this list of thank-you’s. They supported me when I made the
decision to go to the UT, which was at that time a rather drastic, abrupt and not so obvious
choice. Thank you for the opportunity to live my life, and to let me be who I am.

The last person to thank is Krista, the most important personin my life. Thank you for
supporting me, cheering me up and for making me laugh! You made me the happiest man
ever by marrying me!

Maarten van Riel
Ede, August 2009



Nomenclature

Roman symbols

F; G; H; H anisotropy parameters

R� LankfordR-value, ratio between width and thickness strain

E elasticity matrix

F deformation gradient

L velocity gradient

D rate of deformation

W spin tensor

w work

K tangential stiffness

P polarity matrix

S strength of the dislocation structure matrix

SL latent strength of the dislocation structure matrix

SD directional strength of the dislocation structure

hP variable in the Teodosiu & Hu model

h˛ variable in the Teodosiu & Hu model

H distortion matrix

HL latent distortion matrix

HD directional distortion

N normalised direction of plastic flow



xvi Nomenclature

R vector with residuals from the return mapping algorithm

Greek symbols

˛ back stress vector

˛s saturation value for the back stress

� strain path change indicator

� increment

" strain vector

"eq equivalent plastic strain

� effective stress vector

� plastic multiplier

� friction coefficient

� stress vector

�eq equivalent stress

�, ' yield function

General subscripts and superscripts

.:/e elastic part

.:/p plastic part

.:/bi equi-biaxial

.:/ps plane strain

.:/sh shear

.:/un uniaxial

.:/1;2;3 principal values

Operators

Œ:� components of a tensor in matrix form

Px material time derivative ofx



Nomenclature xvii

a � b single tensor contraction:ai bi

a ˝ b dyadic product:ai bj

A W B double tensor contraction:AklBkl

j:j absolute value

k:k Euclidean norm

.:/T transpose

Abbreviations

BHF blank holder force

CBB cell block boundary

LEDS low energy dislocation sheet

RMA return mapping algorithm

RD rolling direction

TD transverse direction

ND normal direction





1. Introduction

1.1 Numerical predictions of deep drawing processes

Structures made of sheet metal can combine a high stiffness and a low mass. These proper-
ties are exploited in car panels, stiffeners, beer and beverage cans and many other applica-
tions. The production of these products from a sheet, by deformation only, is a challenging
task. To this end, the process of deep drawing was developed in the last century. The prin-
ciple is clarified in Figure 1.1. An initially flat piece of sheet metal (theblank) is clamped
between thedieand theblankholder. As the punch moves downwards, the geometry of the
die and punch is transferred to the blank. The blankholder controls the amount of mate-
rial flowing into the die cavity and hence the amount of strainin the blank. This process
proved to be robust, and once in operation, a constant quality of the products is obtained.
In general, a high production capacity can also be achieved.

blankdie

blankholderpunch

Figure 1.1: The deep drawing of a cup.

Although deep drawing is an efficient production process, itrequires experience and
knowledge to determine the optimal settings for the process. Wrinkling, springback, neck-
ing and complete failure can invalidate the final product. A costly trial and error procedure,
in which the process settings are varied, is required to avoid these undesired effects. A sig-
nificant cost reduction can be made by transferring the trialand error procedure from the
workshop to the computer. Simulations of the deep drawing process are hence performed,
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to predict the process characteristics. Tool settings, blank dimensions and other process
parameters can be determined without the need to manufacture test tools.

TheFinite Element-method is used to simulate the deep drawing process and investigate
its characteristics. These simulations allow the engineerto investigate the influence of
various parameters on the deep drawing process, and also shows how the material deforms
as the product is formed. The state variables in the simulation show the evolution of stress
and strain, and indicate the features in the actual process that need adjustment. In a FE-
code, the actual mechanical behaviour of the blank is described within the material model.
Obviously, a material model that describes the mechanical behaviour accurately will lead
to better overall predictions of the FE-simulation.

Conventional elastic–plastic material models comprise 2 separate models; theyield cri-
terion and thehardening model. The yield criterion describes the stress at which the ma-
terial behaviour changes from elastic to plastic behaviour. They are developed such that
they describe the elastic–plastic transition dependent onthe loading direction. The hard-
ening models describe the material behaviour when the stress state is in the plastic regime.
Here, the deformation is irreversible and in general the stress–strain curve is non-linear.
In the elastic regime, it is assumed for metals that the stress–strain relation is linear and
reversible. The parameters for the classical yield criteria and hardening models are nor-
mally determined using relatively simple tensile tests. However, simple experiments with
changing strain paths have shown that the actual behaviour cannot be described sufficiently
accurately with these models. The observed strain path sensitivity of sheet metal is the
subject of this thesis.

1.2 Strain path sensitivity in metals

In the literature, strain path sensitivity of metals was investigated with 2 characteristic
strain path changes: load reversals and orthogonal strain path changes. The influence of a
load reversal on the mechanical behaviour of metals has beenwell investigated (Chaboche,
1991; Christodoulouet al., 1986; Chunet al., 2002; Hasegawa and Yakou, 1975). Most
materials show the Bauschinger effect in this strain path change,i.e. the stress level in the
new stress direction is lower than in the pre-strain phase. In orthogonal strain path changes,
2 monotonic loading paths with perpendicular loading directions are successively applied,
(Thuillier and Rauch, 1994; Nesterovaet al., 2001). A characteristic sudden increase in
stress in the new loading direction was observed in these experiments. It is believed that the
non-proportional stress levels after strain path changes stem from the developments on the
micro level. The organisation of atoms in the crystal lattice depend on the deformation and
the direction of the applied deformation. Different classes of substructures are recognised,
depending on the deformation direction. Research in this field is ongoing to deduce the
mechanisms that cause the strain path dependent behaviour on the macro scale.

The experiments with an orthogonal strain path change that are presented in the litera-
ture show an intermediate elastic unloading prior to loading in the new direction. This is
due to the experimental setup used. The obtained stress level in the new direction is higher
than for proportional loading. A true deep drawing process,however, will not show a strain
path change with unloading. For this reason it is important to investigate the mechanical
behaviour for a continuous strain path. Note that this consideration led to a discussion in
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which it was speculated that a similar strain path without intermediate unloading would
induce the same stress peak, (De Montleau, 2004; Wanget al., 2008). The experiments
performed in the current thesis add to the conclusion of thatdiscussion.

1.3 Objective of this thesis

An accurate prediction of the stress–strain behaviour enhances the accuracy of the com-
plete simulation of a deep drawing process. The goal of this thesis was to introduce ma-
terial models that are able to describe the complex mechanical behaviour of sheet metal
during strain path changes. Experiments were performed to determine the actual material
behaviour, in both continuous and discontinuous strain paths. The material model was to
be used in full deep drawing simulations, and hence was required to be sufficiently time
efficient.

1.4 Outline

Chapter 2 of this thesis starts with an overview of the basic concepts that are used in ma-
terial modelling. The commonly used monotonic and non-proportional experiments to
investigate the mechanical behaviour are discussed here. It is shown that experiments with
a changing, but continuous strain path, are a rarity in this field. Furthermore, different
existing theories that describe the influence of the dislocation structure on the macro me-
chanical behaviour are presented. Concepts of these studies will be used on the macro scale
to model the mechanical behaviour. However, it also indicates that continuous strain path
changes have not yet been explored.

Chapter 3 concerns an investigation of mechanical behaviour by a biaxial testing de-
vice. The TWENTE BIAXIAL TESTER was used to deform a sample in simple shear and
plane strain tension. To assess the homogeneity of the deformation area, the sample was
investigated with an optical deformation measurement system. Next, the measured defor-
mations were used to define the conditions for a FE-simulation of the experiment. The
stress-state across the sample was investigated and the force resultant was compared with
the experimentally observed values.

In Chapter 4 the results of the experiments performed on the TWENTE BIAXIAL TESTER

are presented. The mechanical behaviour under reversed andorthogonal strain path changes
is examined. The results are used for the characterisation of the materials and for the vali-
dation of the material models. The materials investigated in this thesis are DC06, AA5182,
DP600 and H340. The results demonstrate the need for strain path sensitive models.

Several material models are discussed in Chapter 5. Firstly, a systematic procedure for
the evaluation of the stress–strain relation is proposed. Additionally, a method is introduced
that allows more elaborate use of yield criteria that are specifically developed for sheet
metal forming processes. Full strain path dependent modelsby Teodosiu and Hu (1995) and
Levkovitch and Svendsen (2007) are used to describe the mechanical behaviour observed in
the experiments. DC06 is the most challenging material in terms of strain path sensitivity,
hence this material is used as a test case. This chapter also contains the description of
an indicator that describes how “severe” a strain path changes is. It can be used as a
post processing tool to determine the accuracy of the simulation, and indicates whether
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the simulated process requires a full strain path dependentmaterial model for satisfactory
results.

In Chapter 6 the performance of the material models is studied by means of 2 sets
of experiments. Tests on the TWENTE BIAXIAL TESTER with combined tension–cyclic
shear deformation show the performance of the material models when describing a non-
proportional strain path. Secondly, an academic deep drawing product represents an in-
dustrial application for the material models. The strain path change indicator is used to
demonstrate the strain path changes that are experienced bythe material. The material
models are assessed for their performance in this setting.

Finally, Chapter 7 summarises the conclusions of this work and the recommendations
for future research.



2. Plasticity in sheet metal

In this thesis the mechanical behaviour of sheet metal subjected to strain path changes
is investigated. The current material models cannot describe the mechanical behaviour
that occurs when a material experiences a strain path change. The aim of this work is to
find material models that can accurately describe the effects observed in experiments with
strain path changes, and that are sufficiently efficient to beapplicable in simulations of true
forming simulations. Within the very broad science of metalplasticity this research is only
one of the topics. In this chapter the background of the mechanical behaviour and the basic
concepts which describe it are presented. Also, different classes of material models are
discussed.

The models in macro scale plasticity, Section 2.1, describesome phenomena that are
observed with the TWENTE BIAXIAL TESTER in Chapter 3 and these are used in Chapter 4
to show that these classical material models cannot describe all the phenomena observed
in experiments with strain path changes. In Section 2.2 dislocation migration and pattern-
ing is discussed, which explains in a qualitative way what happens during the strain path
changes that are discussed in the literature. Although it does not supply models that can
easily be used in engineering applications, it provides an understanding of the underlying
mechanisms in experiments with strain path changes.

2.1 Sheet metal characterisation

In this section we discuss the basic concepts that are used inthe modelling of plasticity.
First the material models that are currently used are introduced. For a more comprehensive
overview, the books by Simo and Hughes (2000); Belytschkoet al. (2006); Zienkiewicz
and Taylor (2005) are useful. After that, different experiments are discussed to validate and
optimise these models. Finally, the current status from theliterature to define and measure
strain path dependency is demonstrated.

2.1.1 Elastic–plastic material models

To describe the elastic–plastic mechanical behaviour of metal, classical material models
describe the stress–strain behaviour making use of a yield function':

' D �eq.� / � �f."eq/ (2.1)

This material model consists of 2 models; the yield surface and the hardening model,�eq

and�f , respectively. The flow stress�f describes the measured stress in terms of equivalent
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Figure 2.1: The yield criteria by Von Mises in plane stress space without shear.

plastic strain"eq. The equivalent stress�eq determines the shape of the yield surface in
stress space and is a function of the full 3-dimensional stress state� . Via the equivalent
stress it is possible to compare a one-dimensional flow curvewith a 3-dimensional stress
state. The yield surface only defines the relation between the different stress states upon
yielding, not the absolute size of the surface. The size of the yield surface is determined
by the hardening model that defines the magnitude of the flow stress. Figure 2.1 illustrates
the concept of a yield criterion. The ellipse represents theyield surface according to Von
Mises and shows the stress states in plane stress at which yielding occurs. For the situation
where' D 0 in Equation (2.1), the flow stress�f and the equivalent stress�eq are equal.
The stress state� is on the yield surface and plastic deformation may occur. If' < 0, the
equivalent stress is smaller than the current flow stress andthe material behaves elastically.
Situations where' > 0 are not possible in these models. The definition of the yield surface
defines the ratio between the stress states at which yieldingoccurs, but does not state which
stress state corresponds with the flow stress. In this work, the yield function is defined such
that a uniaxial stress state is equal to the equivalent stress: �x D �eq.�x/ D �f .

The equivalent plastic strain is defined according to the yield function. It is assumed that
the equivalent plastic strain rate (P"eq) and the equivalent stress are energetically conjugated.
This is elaborated in terms of the rate of plastic workPwp:

Pwp D �eqP"eq D � W P"p (2.2)

in which P"p represents the plastic strain rate. From this equation, theequivalent plastic
strain rate is calculated:

P"eq D � W P"p

�eq
(2.3)

To describe the relation between the strain and the stress state, the model discrimi-
nates between elastic and plastic deformation. For the elastic deformation the generalised
Hooke’s law is used:

P� D E W P"e (2.4)
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where"e is the elastic strain tensor andE is a fourth order tensor with elastic properties.
Plastic material behaviour is described by means of Drucker’s postulate, which states that
the rate of plastic strain is perpendicular to the yield surface:

P"p D P�@�eq

@�
(2.5)

whereP� is the plastic multiplier.
The model in Equation (2.1) includes the isotropic hardening of the material,i.e. the

shape of the yield surface is determined by the definition of the equivalent stress and the
size of the yield surface is determined by the flow stress. This is shown in Figure 2.2 where
the initial yield surface (a) evolves to yield surface (b). To describe the Bauschinger effect
in a cyclic test, kinematic hardening is commonly used. Thismodel describes hardening by
the movement of the yield surface within stress space. The translation of the yield surface
is indicated with the back stress tensor˛. The definition of the yield criterion now reads:

' D �eq.� � ˛/ � �f."eq/ (2.6)

where the term.� � ˛/ is equivalent to the effective stress�. The back stress evolves in
the direction of the plastic strain rate (Prager) or in the direction of the stress (Ziegler).
This model is indicated by yield surface (c). Distortional hardening (yield surface (d))
describes the change of the shape of the yield surface as a function of the plastic strain and
the direction of plastic flow or the direction of the stress rate.

�x

�y

˛

(a)

(b)

(c)
(d)

Figure 2.2: The different hardening models demonstrated bypure shear deformation.

2.1.2 Experiments

The traditional test to determine the material behaviour ofsheet metals is the uniaxial ten-
sile test. Figure 2.3 shows the sample and how it is oriented with respect to the original
sheet. The sample coordinates are indicated withx, y andz. The Rolling Direction (RD),
the Transverse Direction (TD) and the Normal Direction (ND)are used to indicate the
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x

y z

RD

TD ND

�

Figure 2.3: A sample used in uniaxial tests for sheet material.

directions used in the fabrication of the sheet. The angle ofthe sample orientation with re-
spect to the rolling direction is indicated by the angle� . Due to the rolling process a texture
develops in the material. This texture is symmetric in the transverse, normal and rolling
directions. The mechanical behaviour of most sheet metals is dependent on the loading
direction with respect to the texture orientation. This is captured in the so calledR� -value:

R� D "y

"z

(2.7)

where"y and"y denote the transverse and thickness strain respectively. If R� D 1 for all
values of� , the material behaves isotropically, but ifR > 1 or R < 1 the material behaves
anisotropically. IfR is dependent on the angle� , the material is planar anisotropic. For a
material withR > 1, the material has a relatively high resistance to thinning.

Traditionally, the uniaxial tensile test is used to benchmark the hardening behaviour of
a material. This experiment alone suffices to fit an elastic–plastic material model with the
Von Mises yield surface. To describe the yielding behaviourmore accurately, new yield
surfaces were introduced. The Hill’48 yield surface requires theR-values in 3 different
directions:0ı, 45ı and90ı. With time, more experiments were introduced to describe the
mechanical behaviour more accurately. Figure 2.4 shows different experiments on sheet
metal to investigate the mechanical behaviour under different stress states. These experi-
ments are discussed briefly as follows.

The pure shearpoint is defined as the stress state where the tensile and transverse
stresses are equal in magnitude, but opposite in sign. Due tothe complexity of such a test,
the loading conditions are changed such that the same stressstate exists, but the feasibility
of the test increases; this is indicated in Figure 2.5. Effectively, the sample is rotated by
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�x

�y

equi-biaxial stress

plane strain tension

uniaxial stress

pure shear

Figure 2.4: Different experiments to measure the stress–strain behaviour for various stress states.

45ı and in stead of compressive and tensile stresses,simple sheardeformation is applied.
The plane strain tensile test is defined as a tensile test without transverse contraction. The
stress state in this test is obtained by preparing a sample with a large width compared to
its height. At the edges uniaxial tensile deformation will occur, but if the width to height
ratio is large enough, the largest part of the sample will be in plane strain tension (An
et al., 2004). Finally, the equi-biaxial test stretches a square specimen in 2 perpendicular
directions. This experiment is mostly performed with a cruciform specimen (Kuwabara
et al., 2002).

principle stresses

shear stresses

shear deformation

Figure 2.5: Pure shear converted to simple shear for isotropic behaviour.
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Figure 2.6: The deformation of a body.

Measuring deformation and stresses

In the uniaxial tensile test the strains and stresses are determined easily, but this aspect of
material characterisation is more complex than in other experiments. To this end, some
definitions of continuum mechanics are used to allow for the determination of strains and
stresses.

To characterise the deformation of a body, we refer to Figure2.6. The domain of the
body in the initial state is indicated by�0. Within that domain any arbitrary infinitesimal
vector dx can be defined. Upon loading of the body, it is deformed to its current domain
�. The function� maps the initial configuration to the current configuration:

x D �.X; t/ (2.8)

Thedeformation gradientis the derivative of the mapping with respect to the current ma-
terial points:

F D @�.X; t/

@X
(2.9)

An infinitesimal vectordX in the initial domain is mapped to the current domain, todx.
The relation between the 2 segments is captured in the deformation gradient:

dx D F dX (2.10)

Next, thevelocity gradientL indicates the relative velocity and rotation and is defined as:

L D PF � F�1 (2.11)

The velocity gradient can be decomposed into a symmetric part D and a skew-symmetric
partW:

L D D C W (2.12)

In elastic–plastic analysis of metals, the rate of deformation is commonly decomposed into
an elastic and plastic part:

D D D
e C D

p (2.13)
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# D 90ı

# D 45ı

# D 0ı

Figure 2.7: Different 2 stage strain path changes.

From the rate of deformation the logarithmic strain increment can be determined:

D�t � " (2.14)

This holds for small time steps and for proportional loading. Furthermore, in metals plas-
ticity it is assumed that a plastic volume change is not possible. Hence,

tr.Dp/ D 0 (2.15)

Engineering stress is defined as the ratio of the tensile force over the initial cross section.
It is common practice in metals plasticity to usetrue stressesor Cauchy stresses, i.e. the
force divided by the current cross section.

2.1.3 Strain path changes

The experiments on strain path changes that have been reported so far in the literature
mostly apply two-stage strain path changes (Fernandeset al., 1993; Rauch and Schmitt,
1989; Gardeyet al., 2005; Tarigopulaet al., 2008). This is done by applying a deformation
to a large sample, after which a smaller sample is removed, atan angle# , see Figure 2.7.
This smaller sample is now also tested. An indication for thestrain path change between
the first and the second loading stage is given by Schmittet al. (1985) as follows:

cos � D "1 � "2

jj"1jj jj"2jj (2.16)

The range of the indicator isŒ�1; 1�, with � D �1 indicating reverse loading,� D 1

monotonic loading and� D 0 orthogonal loading. It is observed that# and� are not
necessarily equal. For example, if# D 90ı, the strain path change� D 138ı.

The material models and experiments so far do not fully describe strain path dependent
material behaviour. Isotropic hardening describes the mechanical behaviour as a function
of accumulated strain and not as a function of the direction of plastic flow. If a material is
modelled with kinematic hardening, the Bauschinger effectis included, but the mechani-
cal behaviour during orthogonal strain path changes cannotbe described by these models.
Gradual strain path changes as observed in a real deep drawing process are not applied and
thus need to be explored for further improvement of materialmodels and understanding.

2.2 Dislocation structure evolution

In this section the micro-mechanical behaviour and its influence on the flow stress is dis-
cussed. Firstly, the evolution of the dislocation structure under monotonic loading is intro-
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Figure 2.8: Cell block structure of a copper specimen havingundergone 7.5 % rolling reduction.
The rolling direction corresponds to the horizontal direction (McCabeet al., 2004).

duced. After this a section is devoted to the mechanisms thatcause the Bauschinger effect,
which is followed by a section on the formation of microbandsthat typically evolve under
orthogonal strain path changes. The phenomena observed at this level are the causes of the
strain path sensitive behaviour.

The evolution of the dislocation structure in metals has been much investigated, which
is reflected in the number of papers in this field. The materials investigated in the field
of strain path dependency are steels, copper and aluminium.Because copper and mild
steel show similar behaviour under strain path changes, references to these studies are also
included. Finally, it is observed that the designation of phenomena can vary from author to
author.

2.2.1 Monotonic loading

In an undeformed metal the dislocations are randomly distributed. During elastic defor-
mation, the crystal lattice is stretched as a whole, and the dislocations move in random
directions. Plastic deformation takes place when dislocations migrate simultaneously in a
preferred direction.

The dislocations start interacting and form tangles, and socreate regions with relatively
high and low dislocation densities. Eventually, the highlydensed areas link together to
form a cellular structure in which volumes with a low dislocation density, the cells, are
enclosed. The areas with a high dislocation density are the cell walls. An example of
this cell forming for copper is depicted in Figure 2.8. Typically, these cells appear after
3 % strain and are completely developed after 10 % strain. This evolution was found by
different authors and for different metals.

As deformation continues, the size of the dislocation cellsdecreases rapidly, but at a
decreasing rate. Besides that, the dislocations vanish from the cell interiors, and migrate to
the cell walls. In turn, the cell walls increase in thicknessand collapse to cell boundaries.
With higher strains (" > 1) the cell size does not increase any further even though the ma-
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(a) Developed structure at room temperature. (b) Developed structure at lowered temperature
.125K/.

Figure 2.9: The dislocation distribution in a mild steel after 35 % of shear deformation (Rauch,
1997).

terial is progressively deformed (Sevillanoet al., 1981). For lower strains it was observed
that with decreasing cell sizer , the flow stress increases. A much used empirical relation
for this phenomenon is:

�f D CGbp
r

(2.17)

whereG is the shear modulus,b the Burgers vector andC a material constant. This equa-
tion is referred to as the Hall–Petch relation, and is also known as the principle of similitude.
This equation describes in a phenomenological way the relation between the dislocation
cell size and the flow stress. Although the Hall–Petch relation was confirmed, it is noted
that a decreasing cell size is not necessarily the cause of the increased flow stress.

To investigate the influence of the dislocation structure onthe flow stress, experiments
were carried out by Johnsonet al. (1990). Mild steel was investigated by tensile tests
at cryogenic and room temperatures up to a strain of 10 %. The experiments performed
at room temperature showed the cellular structure, whereasthe experiments at cryogenic
temperatures did not show any patterning. The experiments at lower temperature show a
significant increase in flow stress; the yield stress for the experiment at room temperature
was approximately 150 MPa and for the test at 201 K a yield stress of 280 MPa was mea-
sured. The hardening curves were comparable, but the hardening rate of the test at room
temperature was slightly higher. Subsequently, the samples that were pre-strained at cryo-
genic temperatures were loaded further at room temperature. The resulting flow curve now
almost coincided with the material pre-strained at room temperature. In the second loading
phase, the yield stress of the samples pre-strained at room temperature and at 201 K have
a yield stress of 315 MPa and the hardening curves are similar. Additionally, experiments
were performed with a lower temperature in the second stage.It was found that the temper-
ature in the first stage does not influence the resulting flow curves at lower temperatures.
Similar results were found by Rauch (1997). Indeed, deformations at lower temperatures
led to a homogeneous distribution of dislocations whereas the test at room temperature
showed a clear cellular structure, see Figure 2.9. Both authors concluded that there is a
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Figure 2.10: A cellular structure obtained by shearing a specimen of a low-carbon IF-steel. The
arrows indicate cell block boundaries (Peeterset al., 2001a).

minor effect of the dislocation structure on the flow stress.It was found that the dislocation
density, not the structure, dictated the flow stress.

With increasing deformation, the cells of the cellular structure become smaller and the
walls become relatively thicker. At some point aligned cellwalls are connected to form a
Cell Block Boundary, see Figure 2.10. They form in turn a larger structure than the initial
cellular structure, and enclose multiple cells of this lower level cellular structure. The
CBB’s are characterised by a higher misorientation compared to the surrounding material;
compared to the orientation of the external deformation, they are aligned with the highly
stressed slip planes. Kuhlmann-Wilsdorf (1989) explains in a quantitative way how CBB’s
evolve with deformation. Due to their findings, the name ofLow Energy Dislocation Sheets
or LEDSwas introduced1.

Lewandowska (2003) investigated the aluminium alloys AA5182 in simple shear de-
formation and found that the evolution of this structure depended on the orientation of the
individual grains. A homogeneous distribution of dislocations was observed with the grains
having ah1 0 0i direction parallel to the normal direction of the sheet, seeFigure 2.11(a).
When the grains are oriented with theh1 1 2i direction normal to the sheet, a well defined
structure with dislocation walls along thef1 1 1g slip planes evolve, see Figure 2.11(b). In
Figure 2.11(b) the orientation of the dislocation sheets isparallel and perpendicular to the
shearing direction.

In Thuillier and Rauch (1994) the dislocation structure of mild steel under monotonic
deformation is discussed. A similar structure exists as observed in copper (McCabeet al.,
2004), the cellular structure is roughly parallel with the shear direction. Also, cell block
boundaries perpendicular to the shear direction are formed. In a tensile test, the same
structure exists, but the dislocation sheets are formed inclined to the tensile direction (45ı ˙
15ı) and correspond to an active slip system. The shape of the structure however remains
rectangular.

Although LEDS are considered to contribute to the work hardening, there is no decisive
proof of that so far. The relation between the dislocation structure and the flow stress is

1In the literature, different terms have been used for the cellular structures includingcell boundaries, geomet-
rically necessary dislocation boundaries(GNBs) andcarpet structures.



2.2 Dislocation structure evolution 15

(a) A nearly uniform distribution of the dislocations. (b) Two sets of dislocation walls formed during de-
formation.

Figure 2.11: The dislocation distribution of the dislocations in a AA5182 alloy after30% of shear
deformation (Lewandowska, 2003).

consistent, but it seems not to be causal.

2.2.2 Bauschinger effect

The Bauschinger effect describes the decreased flow stress after a load reversal. In this
research such strain path changes are important to considerbecause they take place in
bending–unbending of the sheet in deep drawing processes. To examine this behaviour,
experiments with simple shear in forward and reverse directions are used to mimic the load
reversal, but also tension–compression tests are performed to investigate the phenomena.
Most metals show the Bauschinger effect. Different ideas onthe cause of this phenomenon
have been developed and are discussed here.

With deformation in the same direction, the dislocations migrate towards the cell walls,
and pile-ups of dislocation evolve. These hamper further deformation and increase the work
hardening rate. In general, it is assumed that a load reversal releases the stuck dislocations
from their positions and because their displacement is reversed, they migrate towards the
dislocation free cell interior. Only small stresses are required to translate the dislocations
through this area, explaining the Bauschinger effect.

Mughrabi (1983) found that long-range internal stresses prevail in crystals with dislo-
cation walls. So called “interface dislocations” occur between the highly stressed walls of
the cellular structure and the low stressed internal regioninside the cells. With increasing
monotonic deformation, more interface dislocations appear, causing long-range internal
stresses. Upon load reversal, the long-range internal stresses are released and contribute
to the Bauschinger effect. In the same paper, (Mughrabi, 1983), a composite model was
presented to describe the stresses in the cell walls and the inner regions of the cells. Good
results have been achieved and some updated models have beendeveloped to describe the
macro mechanical behaviour in this way (Goerdeler and Gottstein, 2001).

The micro-structural developments observed in tension–compression tests consist mainly
of disruption of the cell walls. From observations with TEM it was concluded that the dis-
location wall thickness is not reduced, but the wall breaks apart. It is also mentioned that



16 Plasticity in sheet metal

dislocations move to the cell interior, hereby decreasing the density of the dislocations in
the wall (Hasegawa and Yakou, 1975) and hence creating the apparent disruption of cells.
This phenomenon can be used to model cyclic behaviour (Christodoulouet al., 1986; Vi-
atkina, 2005).

Rauch (1997) investigated the influence of dislocation structure on the flow stress in
reverse tests. Samples with a cellular structure were prepared by deformation at room tem-
perature and samples with a homogeneous dislocation distribution were obtained by pre-
deformation at 177 K. The material with the pre-straining atcryogenic temperature showed
a flow stress that was 10 % lower than the material pre-strained at room temperature. From
this it was concluded that it is the concentration of dislocations that drives the Bauschinger
effect, and not the cellular structure.

2.2.3 Microbands

Upon orthogonal strain path changes microbands2 are observed in the dislocation structure.
Microbands consist of longitudinal cells with very sharp plate-like walls. The thickness of
these cells is 0.2-0.4�m and cross the initial cellular structure. The spacing between the
microbands is 4�m. They were found mostly in copper and mild steel (Ananthanet al.,
1991; Rauch and Thuillier, 1993; Thuillier and Rauch, 1994)

The microbands have a low dislocation density in the cells, enhancing the deformation
within the microbands. This is illustrated in Figure 2.12. The TEM image in Figure 2.12(a)
shows the dislocation structure in a sample that is uniaxially pre-strained, after which sim-
ple shear is applied perpendicular to the uniaxial direction. This graph shows clearly that
the shear deformation is localised in the microbands. In Figure 2.12(b) the localised shear
deformation is schematically illustrated. The initial structure is not deformed, only the mi-
crobands are sheared. About 80 % of the shear deformation is absorbed in the microbands.

The microbands are formed at the onset of the shear deformation and are clearly visible
after 4 % shear deformation, Figure 2.13. This graph illustrates the dimensions of the
microbands and besides shows that the microbands appear anddisappear along their length.
The microbands develop with respect to the macroscopic loading orientation.

Microbands have only been observed in aluminium by Lewandowska (2003) in AA6016.
However, the observations made in this paper were made after20 % of shear deformation
and whereas mild steel shows clear kinks after such deformations (Figure 2.12), the mi-
crobands found in AA6016 do not seem to accommodate any localised shear.

It is assumed by many authors that the evolution and degradation of microbands are
the key mechanisms that activate the cross-hardening effect in orthogonal tests. For the
microbands to evolve a relatively high stress is required, but once in existence, a lower
stress is required because of the relatively dislocation free area within their cells. This phe-
nomenon is used by some authors as a basis for models that include strain path dependent
behaviour (Peeterset al., 2001b,a; Teodosiu and Hu, 1995).

2“Microband” is a name that is often used in the literature to indicate long and relatively narrow cells. Sevillano
et al. (1981) observed them in monotonically deformed copper. This was confirmed by Ananthanet al. (1991),
but they call the microbands observed after a strain path change second generation microbands (MB2).
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(a) Microbands (indicated by arrows) in mild steel (Thuillier and Rauch, 1994).

shear direction

offset

initial orientation

(b) A schematic representation of the offsets in the material induced by the
microbands. The arrows indicate microbands.

Figure 2.12: Illustration of microbands in the dislocationstructure after 20 % pre-strain in tensile
direction (T.D.), followed by 12 % shear deformation.
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Figure 2.13: Microbands (indicated by arrows) in mild steel, 25 % pre-strain in the tensile di-
rection (T.D.), followed by simple shear,
 D 4 % (Thuillier and Rauch, 1994).

2.3 Conclusion

This chapter illustrates some of the basic concepts in the modelling of plasticity. The “clas-
sical” material models describe the hardening behaviour independent of the strain path. To
describe a load reversal, the concept of kinematic hardening is introduced. However, full
strain path dependent material models are still “exotic”.

The dislocation structure that evolves during plastic deformation has been investigated
to find the relation between the mechanical behaviour and thecellular structures that are
present in the material. In the literature the relation between the mechanical behaviour and
the structures that evolve on micro-scale are described, but there appears to be no decisive
evidence that the dislocation structure is the driving force behind the mechanical behaviour.
Experiments with two-stage orthogonal strain path changeshave been investigated, but the
experiments with a continuous strain path change have not been investigated so far. The
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continuous or fluent strain path changes, as they are appliedin a deep drawing process,
are not represented by the strain path dependent experiments in the literature. They are all
sharp with elastic unloading between the deformation modes. To this end, the TWENTE

BIAXIAL TESTER, which can prescribe such strain paths is introduced in Chapter 3. The
experiments performed with this testing device are then considered in Chapter 4.





3. The Twente biaxial tester

The sensitivity of the mechanical behaviour of sheet metal with respect to strain path
changes is investigated in this work with the TWENTE BIAXIAL TESTER. This testing
device can load a specimen in both the tensile and shear directions. Both loading directions
are individually controlled and are used in this work to apply strain path changes to the
material.

In this chapter the TWENTE BIAXIAL TESTER is presented and the procedure to de-
termine stress–strain curves is discussed. The strains aremeasured from the surface with
a digital camera and the stresses are determined via the force-sensors. The homogeneity
of the deformation area is assessed with advanced digital image correlation software that
measures the deformations locally. The stresses are validated with a FE calculation of the
deformation area. This chapter also shows that the deformation of the test equipment itself
is important in the control of the strain path. A simple algorithm is presented that allows
for the compensation of the elastic deformation of the test equipment.

3.1 Goal of the test equipment

Classically, uniaxial tensile tests are used to determine ahardening curve and fit the yield
locus parameters. This is sufficient to simulate a sheet metal forming process. However,
in sheet metal forming processes the stress state will be changing and will not always
coincide with the uniaxial stress state. Furthermore, the strain paths that occur in a sheet
metal forming process are not monotonic and mostly non-proportional, hence the uniaxial
tensile test cannot fully represent the loading situationsthat occur in a true forming process.

To investigate the mechanical behaviour of sheet metal while undergoing strain path
changes, a more advanced experiment than the uniaxial tensile test is required. At the
University of Twente a biaxial testing device was developedthat loads a specimen of sheet
metal in tension and shear (Pijlman, 2001). The truly exceptional advantage of the TWENTE

BIAXIAL TESTER is that continuous strain path changes can be applied while still measur-
ing the stresses. This is a big leap forward compared to the traditional uniaxial tensile tester.
Monotonic hardening curves in shear or tension can also still be measured. Finally, the me-
chanical behaviour under cyclic loading can be measured by the application of reversed
simple shear to the sample. Hence, the TWENTE BIAXIAL TESTER supplies many different
mechanical experiments in one machine. The goal of the tester is to measure the harden-
ing behaviour of the material. The elastic properties and the accurate measurement of the
elastic–plastic transition of sheet metal is not of crucialimportance in the test equipment.
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Figure 3.1: The shape and dimensions of the sample in mm. The black and cross-hatched area
represent the deformation area and the clamped area, respectively. The zoom shows
the dots that are used to measure the deformation.

The TWENTE BIAXIAL TESTER was developed to perform experiments with strain path
changes toi) investigate the mechanical behaviour and understand mechanisms on a micro-
structural level, andii ) to develop and fit material models to the measured stress–strain
curves.

3.2 Working principles

The specimen dimensions used in the biaxial tester are depicted in Figure 3.1. The thick-
ness of the samples is between 0.7 mm and 2.5 mm. The lower and upper parts of the
sample are clamped in the machine, leaving a deformation region of 45 � 3 mm. The
height of the deformation area is small with respect to the thickness in order to apply sim-
ple shear without the material buckling. Also, in order to have a large area of homogeneous
deformation, the width of the deformation area is large. This imposes a plane strain condi-
tion in the transverse direction of the material in the central region of the deformation area.
Towards the edges of the deformation area the deformation state will tend to the uniaxial
stress state.

The biaxial tester is based on a traditional tensile tester,see Figure 3.2(a). Between
the 2 cross bars an additional framework is mounted that accommodates the actuator for
the shear deformation. By using a construction of bearings in both the horizontal and
vertical directions it is possible to translate the clamps arbitrarily in the horizontal and
vertical directions, hereby applying simple shear or tension, respectively. Both actuators
are equipped with force sensors to determine the stresses. The deformation is determined
from the positions of black dots that are applied to the surface of the specimen and which
are in turn tracked by a digital camera.
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(a) Picture of the experimental setup.

controller

sample

camera

PC

(b) Schematic of the biaxial test setup.

Figure 3.2: The biaxial test equipment.
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3.2.1 Test procedure

The test procedure for an experiment starts with writing an input file for the controller,
Figure 3.2(b). This file contains the description for the movement of the actuators. This
can be done explicitly, but also functions can be programmedbased on input frome.g.the
force sensors. After the dots are applied to the sample, the specimen is mounted in the
machine. Next, the camera is positioned and is focussed withthe aid of a LABVIEW appli-
cation installed on the PC. Via this application the test is started and all the data is logged:
time, position of the dots, force-signals and the actuator displacement. Depending on the
camera’s view, up to 40 data sets per second can be stored. A typical experiment takes 50
minutes, where 30 min is spent on the mounting and disassembly of the sample; 8 min on
sample preparation, and 12 min on camera positioning and performing the experiment. The
actual experiment in which the deformation is applied takes1 to 10 min.

3.3 Strain measurement

The deformation of the sample is reflected in the change of thecoordinates of the dots
as represented in Figure 3.3. To determine the strain, theF-tensor must be determined
that maps the reference configuration�0 to the current configuration�t . Assuming a
homogeneous deformation field, Equation (2.10) is evaluated with dx ! �x:

�x D F�X (3.1)

The vectors�x and�X represent the lines between the dots in the initial configuration and
the configuration at timet . In the case of deformation in 2D, in the plane only, 3 dots are
required to fully determine the strain field. From these dotsonly 2 vectors are needed to
determine the components ofF. In matrix-vector format this reads:
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This system of equations is fully determined, and the application of more dots will result in
an over-determined system. From a theoretical point of view, more dots do not contribute
to a better description ofF. In the experimental setup, however, noise is measured at the
positions of the dots, and this affects the determination ofF. To this end, more dots are

�0 �t

�X1

�X2 �X3

F

�x1
�x2 �x3

Figure 3.3: The displacement of the dots indicates the deformation.
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applied, such that the effect of the noise in the measurementis reduced. In the absence
of noise and for a homogeneous deformation field, more vectors can be used such that the
following holds:
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This equation is written such that the components of theF-tensor are arranged in a vector
F

v and the initial vectors�Xi are collected in the matrixA:
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” �x D A F
v (3.4)

For the displacement measurements of the dots however, thisequation cannot be fulfilled
due to the noise and thus:

�x � A F
v (3.5)

In this work, a least squares approximation was used to determineF
v such that the error in

Equation (3.4) is minimised. Formally, the following residual function has to be minimised
to findF

v:
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To determineFv from this equation is a lengthy operation. To this end, Equation (3.4) is
rewritten such that Equation (3.6) is minimised:
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The advantage of this procedure is that the matrixA needs to be determined only once at
the beginning of an experiment. Especially in a setting where the deformation is calcu-
lated in real time this is beneficial for the processing speed. With F in hand, following
Equation (2.11), the velocity gradient can be calculated:

L�t � �F � F�1 (3.8)
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(b) The measured strain with dots of 0.6 mm diameter.

Figure 3.4: Properties of the deformation measurement in a stationary situation.

which is true if the time steps used are small. To present the results of the mechanical
experiments of the samples tested on the TWENTE BIAXIAL TESTER, L is not decomposed
in D andW, but the logarithmic strains are determined directly fromL:

�" D L (3.9)

This expression holds for small time steps and for proportional loading. For a non-proportional
loading scenario that describes a deformation path with thefinal configuration equal to the
final configuration, a non-zero strain may be obtained (Belytschkoet al., 2006). It is noted
that the TWENTE BIAXIAL TESTER is also used for non-proportional strain paths, but for
the presentation of results this is acceptable.

3.3.1 Accuracy of the strain determination

To measure the deformation of the material, 2 options were considered; strain gages and
optical strain measurement. Strain gages are known for their high accuracy, but are not
applicable to the small deformation area. The smallest strain gage that could measure
tensile, transverse and shear strain was 3.5 mm high, which exceeds the 3.0 mm height of
the deformation area. Also, strain gages and the smaller ones in particular are difficult to
mount on the sample which would lead to a more lengthy procedure for the experiment.
The optical strain measurement used here has the advantage of being accurate while it
requires only limited amount of preparation time. In this section, the accuracy of the strain
measurement with optical strain measurement is investigated.

The weighing function that determines the coordinate of thedot distinguishes between
the edge of the dot and the centre of the dot. The “blackness” of the edge changes during
a test because the sample moves with respect to the light source. This causes noise on
the coordinate of the dot and hence also in the strain calculation. The influence of the dot
size on the noise is illustrated in Figure 3.4(a) by means of 2dots with different diameters;
0.3 mm and 0.6 mm. Smaller diameter dots than 0.3 mm cannot be made with the current
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tools. A dot with a diameter larger than 0.6 mm would contribute to an even higher accuracy
of the measurement, especially if the deformation area is fully homogeneous. However,
dots with a diameter larger than 0.6 mm do not seem to be realistic to represent a true
“material point”. Hence, a diameter of 0.6 mm for the dots waschosen as a maximum. The
dots are applied to the deformation surface by manually squeezing the silicon kit through a
mask with the indicated diameters. It is recognised that this procedure does not allow for a
perfect circular dot. Results of the stationary test show that the noise of the dot position of
the large dot iṡ 0:15 pixel and for the dot with diameter 0.3 mm the noise is approximately
˙0:30 pixel. Indeed, a larger dot gives better accuracy in the calculation of the its position.

Not only does the size of the dots matter, but also their relative position. For a good
accuracy of both the tensile and shear deformations, the dots should be positioned on the
corners of a virtual square. However, the deformation area of the sample measures45 �
3 mm2. When the complete deformation area needs to be captured with the camera with a
square light cell, the relative resolution in the tensile direction will be lower than in the shear
direction, because the shear direction can use the full viewof the camera. To increase the
relative accuracy of the tensile deformation measurement,the camera view was limited to a
square of 12 mm of the total area of the deformation area. Due to the relative height of the
deformation area, the dots are divided over 2 horizontal lines; an upper row and a lower row
of dots (see Figure 3.1). To determine the tensile deformation, the accuracy is optimised by
placing the 2 rows as close as possible to the lower and upper edge of the deformation area.
In practise 1.7 mm distance between the 2 rows is used. The transverse and shear strains
can be determined more accurately because the maximum distance between the dots on
the left and on the right is 12 mm. Hence, the influence of the error in the horizontal dot
position is spread over a large distance. Besides, vectors that connect 2 dots in the same
row contain information only on the transverse deformation, which is assumed to be zero,
due to the plane strain condition. In the calculation of the strain, only vectors connecting
the upper with the lower row of dots are used, as the vectors inFigure 3.3. The distance
between the 2 rows is approximately 150 pixels. The absoluteerror in the tensile strain,
based on the mentioned data and for only one dot in the lower and upper row, is2 �10�3 (-).
This value is relatively poor, the elastic region of steel cannot be measured satisfactory with
such an error.

Figure 3.4(b) shows the tensile strain in a stationary test in which 16 dots are used for
the calculation of the strain. The size of the dots is 0.6 mm and 2 rows of 8 dots are applied.
The strain is calculated according to Section 3.3. It shows that the error in this measurement
is approximately5 � 10�4 (-). With this accuracy it is possible to observe the elasticdomain
in the tensile tests. Accurate measurements of the elastic behaviour is not the objective of
the test equipment, but it can provide a useful indication ofthe elastic properties.

3.3.2 Validation

The strains in the biaxial test setup are measured by taking the average strain calculated
from the positions of 16 dots on the surface of the deformation region. However, the
stresses and strains are not uniform over the complete deformation area, due to boundary
effects and slip between the clamps and the specimen. These phenomena lead to two effects
that need to be investigated in greater detail:
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Figure 3.5: Results from ARAMIS in a simple shear test on DC06. The shear strain distribution
on a cross section over the specimen is displayed for every 0.1 shear strain in the
central region.

1. inhomogeneous deformation over the deformation area dueto slip;

2. the transition from plane strain tension in the middle of the specimen to uniaxial
tension at the free edge of the sample.

To assess the uniformity of the strain in the deformation area, the optical strain measure-
ment system ARAMIS is used. With this digital image correlation software the local strains
over the complete deformation area are measured. Results ofthe strain distribution for
plane strain tension and simple shear are presented. The results are used to investigate the
slip and the homogeneity of deformation.

The GOM ARAMIS 4M system, that is used in this work, consists of 2 cameras and
software that calculates the deformation field. To interpret the surface of the deformation
area, it is sprayed with a white background, after which a fineblack speckle pattern is
sprayed over it. The software recognises the surface of the deformation area, characterised
by the black dots. The deformation area (45�3 mm) is “discretised” by ARAMIS in 165�11

recognised squares. All the squares define coordinates, which in turn are used to calculate
the strains.

Figure 3.5 shows the results of the strain distribution in a simple shear test. A good
strain distribution is obtained with the simple shear test,even at elevated strains. The edge
effects are minor, at most 3 mm at each side of the specimen shows that the shear strain is
zero at the very edge of the material. Approximately 95 % of the deformation area is in the
same stress state.

Figure 3.6 shows the results of the tensile test with graphs of transverse strain, tensile
strain and theR-value as a function of the horizontal coordinate through the middle plane
of the specimen. Approximately 25 mm of the deformation areashows a transverse strain
of approximately 0, indicating the plane strain condition.Towards the edges, material is
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Figure 3.6: Results of a tensile test on DC06 captured with ARAMIS. Transverse strain(a), ten-
sile strain(b) and the ratio of these (c) are plotted as a function of the horizontal
position on the sample. The strains are measured along a lineat half the height of the
deformation area at intervals of 0.05 tensile strain in the central region.



30 The Twente biaxial tester

 

 

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0

Figure 3.7: The distribution of the transverse strain over the sample at 15 % tensile strain.

pulled inwards, hence the plane strain condition graduallyturns into the uniaxial stress
state. TheR-value is determined via Equation (2.7):

R D "y

"z

D � "y

"x C "y

(3.10)

The R-value of DC06 equals 2.5, which is indeed observed at the left hand side of the
specimen where the uniaxial stress state is present. On the right hand side of the specimen,
this value is not clearly observed. The ARAMIS system cannot measure on the actual free
edge of a material, and here the discretisation of the area isnot close enough to the edge to
capture the actualR-value. Furthermore, it is worth mentioning that from the distribution
of R-values over the width of the specimen, it can be concluded that the ratio between the
tensile and transverse strains is constant for all levels oftensile strain.

In Figure 3.6(b) it is shown that the tensile strain is not homogeneous over the width
of the deformation area. Near the edges of the sample the tensile stain is larger than in the
central region. Probably this is due to the clamping of the specimen. Four bolts are mounted
at the sides of sample, near the edges of the deformation region. It is quite possible that the
local forces from these bolts cause a non-uniform clamping force. It is expected that the
edges would show the largest tensile strain, because that material is also closest to the bolts
that provide the clamping. However, the peak of the tensile strain is not at the very edge
of the sample but slightly shifted to the centre, depending on the amount of tensile strain.
This may be due to the transverse stress that “draws” the material towards the centre of the
specimen. In its turn, the transverse displacement of the material at the edges facilitates
slip in the tensile direction. Due to the tensile slip, less strain is accumulated in the tensile
direction. Figure 3.6(a) illustrates this reasoning. The transverse strain also does not show a
peak at the edge, but closer to the centre of the specimen. Towards the edge, the transverse
strain decreases. Furthermore, due to the different stressstates of the edges and the central
region, uniaxial tension and plane strain tension respectively, differences occur. For the
plane strain deformation mode, the assumption of no plasticvolume change can only be
fulfilled if the thickness strain is of the same oder of magnitude as the tensile strain. At the
edges, where the uniaxial stress state exists, the transverse and thickness strains together
compensate the tensile strain. Hence, the material in the central region of the deformation
area is more easily pulled away under the clamps due to a lowerthickness.
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Figure 3.8: Undeformed mesh (not on true scale) of the deformation area, with the arrows show-
ing the reaction forces and the circles indicating the ‘dots’ for the calculation of the
global strain.

In this work, the material is considered to be in the plane strain condition if the tensile
strain in the peaks is no more than 5 % higher than the strain inthe central region. From
Figure 3.6(b) it is observed that 15 % tensile strain in the central region is the boundary for
which the deformation is still considered homogeneous. In actual experiments this is easy
to control, because the central region is also used for the measurement of deformations.

Figure 3.7 shows the transverse strain distribution in the tensile test at approximately
15 % of tensile strain. This graph illustrates that the transverse strain does not have a
gradient across the height of the specimen.

3.4 Stress measurement

In the former section, it was assumed and verified that the strain field is uniform. In this
section it is assumed that the stress is homogeneous, at least within the strain domain at
which the plane strain condition is fulfilled. The true stresses are determined from the
force sensor and the current cross sectional area of the deformation zone. The current
thickness is calculated with the thickness strain that is determined from the transverse and
tensile strain and the assumption that the material does notshow plastic volume changes:

"p
z D �

�

"p
x C "p

y

�

(3.11)

Which is used in the calculation of the tensile simple shear stress

�y D Fyy

width � thickness� exp "
p
z

(3.12)

�xy D Fxy

width � thickness� exp "
p
z

(3.13)

The validity of this calculation depends on the assumption of the homogeneous stress
distribution across the deformation area. This is investigated in the next section.

3.4.1 Validation

This section describes FE simulations to assess the stress field over the deformation area.
To this end the coordinates of the squares, derived by the ARAMIS system, are used to
define an initial mesh. The displacements of the upper and lower boundary nodes of the
deformation area are used to describe the displacement and deformation. In this way, the
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Figure 3.9: Stress–strain curves for the 3 simulations.

exact deformation experienced by the material is used in theFE-simulation. The Hill ’48
yield criterion and isotropic hardening according to Swiftis used to model the material
behaviour. Simulations are only performed for the plane strain tension test, since the ho-
mogeneity of the deformation area in the simple shear test isassumed to be sufficiently
accurate.

Three simulations are performed to investigate the homogeneity of the stress state in
plane strain tension. The first simulation uses the mesh and boundary conditions defined
by the measurements from ARAMIS. The stress–strain curve is calculated in a similar way
as the procedure in the experiments. The tensile force is determined by summarising the
individual tensile forces on the upper boundary nodes (see arrows in Figure 3.8). The
strains are determined by tracing 4 nodes in the mesh, representing the dots on the speci-
men (the circles in Figure 3.8) and calculating the strain from that. The second simulation
is a one-element test to display the actual stress–strain curve of the material. This simula-
tion represents the true mechanical behaviour. In the thirdsimulation, the ideal experiment
is imitated. A perfectly rectangular mesh is used for the representation of the deformation
area. The upper and lower boundary nodes are constrained in the horizontal direction and
the tensile test is simulated by moving the upper boundary nodes in the vertical direction.
The stress and strain are calculated as in simulation 1. Hence, slip and non-uniform defor-
mation due to slip is excluded in this simulation. It is expected that the stress–strain curves
from simulation 2 and 3 coincide. Simulation 3 only shows theinfluence of the boundary
effects near the free edges. Indeed, Figure 3.9 shows that the stress-strain curve of simu-
lation 3 is only slightly lower than the actual material behaviour represented by simulation
2. Simulation 1 represents the actual test with the TWENTE BIAXIAL TESTER. Due to slip
in the clamps, the sample is not uniformly stretched, resulting in a stress–strain curve that
is 2 % lower at 22 % tensile strain.

Similar global stresses in the simulations do not necessarily indicate that the plane
strain tension test is a good representative for the constitutive behaviour under plane strain
conditions. To this end the tensile stresses are examined, see Figure 3.10. The shown stress
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Figure 3.10: Calculated tensile stress distribution in thesample at 15 % of tensile strain.

distribution is at 15 % tensile strain, since this strain reflects the boundary for homogeneous
tensile deformation. It is remarkable that despite the significant slip between the clamps and
sample, the tensile stress appears to be very homogeneous over the specimen. Boundary
effects are observed at the free edges, but 85 % of the tensilestress lies between 440 and
465 MPa. Towards the edges, the stress drops to 340 MPa. This can be partially attributed
to the present uniaxial tensile stress state because of the free edge. On the other hand, as
observed in Figure 3.6, slip is present in this area, leadingto a lower tensile strain and thus
a lower stress.

3.5 Strain path control

The biaxial test equipment was designed to test materials onnon-proportional strain paths.
However, the finite stiffness of the machine itself plays a crucial role here, which was
already noted in a theoretical study by Kuroda and Tvergaard(1999). The clamp dis-
placement needs to be controlled during non-proportional tests, but the controls act on the
displacement of the actuators. The force is transmitted from the actuators to the clamps via
solid steel bars, bolts and bearings. Due to the limited stiffness of these parts, the displace-
ment is not accurately controlled. Naturally, this problemoccurs also in regular tensile
tests, but the mechanical equipment can be made stiffer because only tensile deformation
is required.

A significant influence is observed when an orthogonal test isperformed without un-
loading, see Figure 3.11. In the first part of the experiment tensile deformation is applied.
Hereby the material stretches, the stress increases, but the test equipment itself is also
stretched. During the shear deformation, the vertical distance between the lower and up-
per clamp should remain constant. However, because of the changing stress state in the
material, the tensile stress drops. This in turn releases the force in the equipment and the
stretching relaxes, moving the clamps from each other and hence increasing the tensile
strain in the specimen. With decreasing tensile stress a newequilibrium is found, but at the
cost of more tensile strain and hence higher tensile stresses. The outcome of such a test is
shown in Figure 3.12. It shows that the tensile strain is increased by 6 % in the shear phase
of the test. This clearly indicates that to perform experiments with continuous orthogo-
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Figure 3.12: Tensile and shear strains during an orthogonaltest as a function of time.
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Figure 3.13: Force as a function of the actuator displacement. The dots indicate the measurements.

nal strain paths the flexibility in the frame must be compensated. This is explained in the
following section.

Stiffness compensation

To determine an algorithm for compensation of the stiffness, it was first examined how
the test equipment responds to forces. The stiffness of the machine is examined by mak-
ing a force–displacement curve of the test equipment itself. An infinitely stiff sample is
mimicked by placing a solid steel block between the clamps. As such, the measured dis-
placement is purely a function of the test rig, not of the tested material. The displacement
of the actuator was measured manually and the force was measured with the force sensor.
The results of this test are plotted in Figure 3.13. A linear relation can be recognised for the
simple shear direction; the stiffness was found to beKs D 18 � 103 N=mm. In the tensile
direction a nonlinearity is observed at the initiation of the force. The stiffness for the linear
part (F > 1500 N) is: Kt D 35 � 103 N=mm. Because the nonlinearity is only observed
at lower forces, a simple linear relation is exploited to compensate for the stiffness of the
machine:

dF D Kt dy (3.14)

This equation is discretised such that it can be used in an open loop feedback system:

�y D �F

Kt
(3.15)

The force increment�F is determined by two subsequent force measurements within a
certain time interval. The incremental stretch of the test equipment (�y) is the result of the
force interval divided by the stiffness of the test equipment. The value of�y is used as a
prediction for the stretch during the next time interval andas such prescribed to the actuator.
This program is implemented in the motion controller (Figure 3.2(b)) and successfully
applied in Section 4.5.2.
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To really prescribe the strain path in experiments, a feedback system based on the
strain measurement is required. The algorithm described above provides a control loop
for orthogonal strain path changes, but not for an arbitrarystrain path. This proved to be
challenging due to some technical issues, whereby this is not easily embedded in the soft-
ware. The advantage of feedback on force, as presented in (3.15), is that the feedback loop
is implemented in the controller, see Figure 3.2(b). The controller handles loops, includ-
ing a force reading, at a maximum rate of500 s�1. The strain measurement however, is
done on the PC with LABVIEW , at a maximum rate of35 s�1. Some tests were performed
with feedback on strain, but due to the low rate of data acquisition, the strain could not
accurately be controlled. For future work, it is worth investing this feedback, because the
versatility of the test equipment could be increased significantly.

3.6 Conclusion

This chapter introduces the biaxial test equipment and its characteristics. It explains the
procedures and the setup of the total experimental rig. To assess the uniformity of the
deformation field in a tensile and shear test, the ARAMIS system was used to measure
the strains in the complete deformation area. It shows that auniform deformation field
is obtained in simple shear deformation. In tensile deformation, the thickness is reduced,
which facilitates slip of the sample from between the clamps. In experiments with a tensile
strain higher than 15 % in the central region of the sample, the difference with tensile strain
at the edge of the sample may exceed 5 % strain. Hence, to assure the plane strain condition
in the sample, tensile strains should be considered up to 15 %.

The strain measurement in a regular experiment is captured by tracing 16 black silicon
dots that are applied to the surface of the deformation area.It was shown that larger dots
give a better accuracy of the dot position. Due to the large number of dots, the least squares
optimisation of the strain provides a low level of noise on the strain measurement. The
accuracy of the tensile test was at least"˙5 �10�4, which is sufficient to give an indication
of the elastic properties. The shear strain can be determined more accurately, because
the dots are further apart in the transverse direction. The stress distribution of the plane
strain test was examined with FE-simulations, which show that the plane strain tension test
presents the stress curve accurately to" D 15% tensile strain. Hence the stress–strain curve
in plane strain tension can be accurately measured up to" D 15% tensile strain. For simple
shear deformation, the strain is uniform over the sample, and thus the related stress is also
uniform. The stress-strain curve for simple shear can therefore be used in the complete
deformation domain of the TWENTE BIAXIAL TESTER.

For controlling experiments, and in particular non-proportional tests, it was shown that
the limited stiffness of the test equipment can affect the prescribed strain path. A compen-
sation algorithm was implemented based on the feedback of force and successfully applied
in Chapter 4.



4. Experiments

Mechanical experiments serve to establish material properties that are required for engi-
neering applications of these materials. The goal of this chapter is to investigate actual
strain path sensitive behaviour. Based on the observed phenomena, material models will
be elaborated in Chapter 5. The experiments show the mechanical behaviour during pro-
portional and non-proportional deformation, and are used to determine the material pa-
rameters. Additional non-proportional experiments, in which cyclic shear and tension are
combined, were performed to validate the material models. The mechanical behaviour was
tested using the TWENTE BIAXIAL TESTER because different strain paths and different
strain path changes can be applied to the materials. For thatreason the uniaxial tensile test,
which would be an obvious choice for materials research, is not used in this work. In this
thesis only the mechanical behaviour is considered; texture and microstructure evolution
are not investigated in the experiments.

Firstly, the test scheme is introduced. In Section 4.2, the anisotropic yielding behaviour
of the materials is discussed. The influence of the strain rate on the stress–strain curves is
investigated in Section 4.3. Cyclic tests are discussed in Section 4.4.1 and the orthogonal
experiments and the characteristic material behaviour is discussed in Section 4.5.

4.1 Outline of experiments

For more advanced material models, experiments with monotonic, cyclic and orthogonal
deformation paths need to be performed. Issues that are relevant for research are the strain
rate dependency; the anisotropy in initial yielding; the Bauschinger effect and the cross-
hardening effect. The following tests were performed to examine these phenomena:

Monotonic tests Monotonic tests were performed in the plane strain tension direction and
in simple shear. Experiments with different strain rates were performed to determine
the reference strain rate in the experiments. To examine theanisotropy, experiments
with different loading directions with respect to the rolling direction were performed.
DC06 was used to determine the reference strain rate and to explore the anisotropy.

Cyclic tests To investigate the Bauschinger effect, reverse shear testswere performed. The
pre-strain was varied in these tests to observe the evolution of the phenomenon.
Three strokes were applied, such that two loading reversalswere applied. From
the literature on similar experiments, the phenomena illustrated in Figure 4.1 were
expected:i) theBauschinger effectis the phenomenon whereby the flow stress after
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transient hardening

work hardening stagnation

flow stress

Figure 4.1: The different phenomenon in cyclic loading.

the load reversal is lower than before the load reversal. At the same time, the flow
stress after the load reversal is often hard to determine because of the smooth transi-
tion from elastic to plastic deformation. For the definitionof the Bauschinger effect,
the flow stress after the load reversal is defined as the stresswhere the curve starts
to deviate from the linear line.ii ) Transient hardeningis the term used to indicate
the smooth transition from the elastic to the plastic regime. iii ) When the material is
again plastically loaded after the load reversal, some materials showwork hardening
stagnation, i.e. the stress does not increase during reverse loading. With increasing
strain, hardening is resumed.

Orthogonal tests In the experiments with orthogonal strain path changes, 2 sequentially
linear, but orthogonal, strain paths, are prescribed. The TWENTE BIAXIAL TESTER

is used to change the strain path from plane strain tension tosimple shear. The
shear direction is perpendicular to the tensile direction.Strain path sensitive ma-
terial shows the typical overshoot after the strain path change; the so-called cross-
hardening. These tests were performed with elastic unloading after the applied ten-
sile deformation. In true deep drawing processes, however,it is more likely that an
orthogonal strain path change takes place without unloading. For that reason the
orthogonal strain path change was also investigated for a continuous stress path, by
omitting the intermediate elastic unloading. Additionally, the experiments without
elastic unloading were used to obtain an indication of the local shape of the yield
locus.

4.2 Anisotropy

Steel sheets are produced from solid blocks of steel by rolling, which introduces a texture
in the material. Hence, the mechanical behaviour of the material is direction dependent.
For the materials used here, the anisotropy is known and has been quantified by Corus.
DC06 was used as a test case to verify that the data from the experiments performed on
the TWENTE BIAXIAL TESTER could be used alongside the data from Corus. Plane strain
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Figure 4.2: Experiments on DC06 for the transverse and rolling direction. The strain rate is
constant for all tests:P" D 1 � 10�2s�1.

tension tests in RD and TD were performed, and a simple shear test with the shearing
direction parallel to the TD was done. Because the simple shear test is actually a pure
shear test at45ı (Figure 4.3), experiments were performed at0ı, 45ı and90ı with RD.
It is recognised that anisotropy is normally determined with uniaxial tensile tests, but in
this work the relation between the external experimental work and the experiments on the
TWENTE BIAXIAL TESTER needed to be confirmed.

The results of the experiments are presented in Figure 4.2. Two phenomena are ob-
served in these tests;i) the initial flow stress in the transverse direction is clearly higher
than the stress in the rolling direction and the stress–strain curve of the transverse test
remains above the stress–strain curve from the tensile testin RD. ii) The elastic–plastic
transition is more pronounced in the transverse test compared to the test in the rolling di-
rection. The experimental values from Figure 4.2 were compared with the measurements
from Corus and the agreement was satisfactory.

deformation stress state principle stresses

Figure 4.3: Simple shear in the transverse direction. The block arrows indicate the RD.
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Figure 4.4: Plane strain tension tests on DC06 with different strain rates. The strain rates are:
0.065s�1, 0.011s�1 and 0.005s�1 for Tests 1, 2 and 3, respectively.

4.3 Strain rate effects

The goal of this section is to determine a reference strain rate for the experiments of the
investigation of strain path sensitivity. The maximum strain rate in the experiments is
constrained by the maximum rate at which the deformation canbe logged. The camera
captures the images and from experiments with different settings of illumination, dot size
and the size of the area that is recorded, it was observed thatthe maximum frame rate
is approximately 30s�1. The minimum strain rate is not constrained, but needs to be
representative for forming process. Also, in the experiments performed on the TWENTE

BIAXIAL TESTER large strains can be applied to the sample. From a practical point of
view, it is desirable to keep the time required for the experiment as short as possible.

In Figure 4.4 three plane strain tensile experiments on DC06with different strain rates
are presented. In test 1 a strain rate of 0.065s�1 was measured. It is observed that the
number of data points in this experiment was relatively small, leading to a rough stress–
strain curve. Test 2 has a strain rate of 0.011s�1. In comparison with test 1, the stress–strain
curve of test 2 has a smooth evolution, without the bumps observed in test 1. In test 3 a
strain rate of 0.005s�1 was applied. As test 2, the stress–strain curve is smooth.

The mechanical behaviour of the DC06 under different strainrates is comparable. The
curves show a similar trend, only test 1 shows an awkward “bump” at the start of the
deformation. This may be due to the sudden application of theforce to the test equipment,
causing a vibration in the construction and leading to a jumpin the force. Quantitatively,
the measured flow stress increases with increasing strain rate.

To exclude the influence of strain rate in the experiments, the strain rate should be as
low as possible. However, from a technical point of view thisis not possible and hence a
reference strain rate of 0.01s�1 in equivalent plastic strain was chosen for the remainder
of the tests.
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4.4 Cyclic deformation

In this section different experiments with cyclic shear on the TWENTE BIAXIAL TESTER

are discussed. Firstly, the experiments with only cyclic shear are discussed. These ex-
periments will be used in Chapter 5 to determine the parameters of the material models.
Additionally, experiments with cyclic shear under continued plane strain tensile deforma-
tion were performed. These tests are used in Chapter 6 to validate the material models
presented in Chapter 5. The strain rates for these tests are approximately 0.01s�1.

4.4.1 Cyclic shear

The experiments with cyclic shear are presented in this section. Different amounts of pre-
strain were used in these experiments to determine the contribution of pre-strain. To apply
the shear deformation to the sample, a prescribed amount of displacement was imposed on
the actuator. Due to the limited stiffness of the test equipment, not all the displacement of
the actuator was transferred to the sample (see also Chapter3). Hence, a thicker specimen
or a specimen with a higher flow curve is strained less than a specimen with a lower flow
curve. This explains the different amounts of pre-strain between the different materials. In
the reverse stroke, the actuator is moved to its maximum displacement. In the third stroke,
the maximum displacement is again covered, but in the opposite direction.

DC06 In Figure 4.5 the results of 3 cyclic tests on DC06 are presented. A characteristic
of mild steel is the pronounced Bauschinger effect, observed in all experiments for both
reversals. This effect is relatively large, approximately80 MPa. Transient hardening occurs
after all reversals, but the effect seems to be independent of the amount of pre-strain. For all
the experiments, for the first and second reversals, the transient hardening appears within
approximately 2.5 % shear strain. The stagnation of work hardening was found to increase
with pre-strain. As described in Chapter 2 this effect is caused by the piled up dislocations
that are released from their position after the load reversal. The easy migration of the
dislocations facilitates the deformation, which leads to alower flow stress. After the first
load reversal, the change from the work hardening stagnation to continued hardening can
be clearly determined. After the second load reversal, the hardening rate is so low that the
difference between regular hardening and the stagnation cannot be distinguished.

AA5182 From experimental results, depicted in Figure 4.6 it is observed that AA5182
shows the Bauschinger effect, but not as pronounced as DC06 does. In experiment 3 the
Bauschinger effect is approximately 50 MPa. The transient hardening effect takes place
within the first 2.5 % after the load reversal. Stagnation of work hardening does not occur,
even if the pre-strain is relatively large. In these experiments, all the samples fail at the
second load reversal. Despite the lower stiffness of AA5182, the strains at the end of the
strokes are lower compared to the DC06 material. This is due to the larger thickness of
AA5182 compared to DC06, 1.0 mm and 0.7 mm respectively. Hence, AA5182 requires
more force, and because the displacement is prescribed at the actuator, more elongation
is absorbed by the test equipment and does not contribute to the shear deformation in the
specimen.
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Figure 4.5: Cyclic tests in simple shear on DC06.
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Figure 4.6: Cyclic tests in simple shear on AA5182.

H340LAD The results of the experiments with cyclic loading on high strength steel are
presented in Figure 4.7. The largest Bauschinger effect wasobserved in experiment 3
and was approximately 120 MPa. The transient effect in this material was smeared out
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Figure 4.7: Cyclic tests in simple shear on H340LAD.

over more shear strain; in all the experiments 7.5 % was required, for the first and second
load reversals. This material shows pronounced work hardening stagnation after the first
load reversal and after the second reversal the flow stress even drops. Apparently, the
deformation in the second stage of experiments 2 and 3 was so large that the work hardening
stagnation changed to softening of the material. None of theH340LAD samples failed in
the cyclic shear experiments.

DP600 This material differs from the other materials due to the large transient effect af-
ter the load reversal, see Figure 4.8. The transition in the reverse stroke from the elastic
to the plastic regime requires approximately 12 % shear strain. The Bauschinger effect is
observed and is approximately 100 MPa in the test 3 with the largest pre-strain. Stagnation
of the work hardening was present in experiments 2 and 3, but was not observed in ex-
periment 1, since the transient hardening effect dominatesthe local stress–strain relation.

4.4.2 Cyclic shear under tension.

In this section a special class of cyclic experiments are presented. The sample is loaded
with cyclic shear, as in Section 4.4.1, and continued plane strain tension is applied during
the cyclic shear. The mechanical properties in the TWENTE BIAXIAL TESTER required
different settings in the controls of the actuators, depending on the tested material. This
leads to different ratios between the tensile and shear loads in the following experiments
for the 4 materials.
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Figure 4.8: Cyclic tests in simple shear on DP600.

DC06 For DC06 three tests were performed where the ratio between tensile and shear de-
formation was changed, see Figure 4.9. In test 1 the contribution of the shear deformation
was dominant. In the first stage of the experiment, both the tensile and shear components
show an ordinary hardening curve. In stress space, Figure 4.9(c), the shear and tensile
stresses do not increase proportionally. A small kink is observed, which is due to the dif-
ferent mechanical properties of the material in the elasticand plastic regime. The strain
path change leads the stress state linearly through the elastic region, Figure 4.9(c). In Fig-
ure 4.9(b) this is shown as a drop to a negative shear. The tensile stress increases with a
sudden jump of 120 MPa in stress Figure 4.9(a). Because the stress state translates through
the elastic region, only a small increase in tensile and shear strain is observed during the
strain path change. As the material becomes plastic again, the shear stress increases further
(Figure 4.9(b)), but the tensile stress drops (Figure 4.9(a)). It was observed that the speci-
men did not show any sign of necking until this point. Experiment 3 has the largest contri-
bution from the tensile deformation and shows a similar trend as experiment 1. However,
in experiment 3 the tensile stress does not drop after the strain path change. Additionally,
test 3 in Figure 4.9(b) shows that the elastic regime in the shear curve is relatively small.
The stress path, Figure 4.9(c), shows that the supposed elastic behaviour is not linear during
the strain path change. For this experiment the stress statecould be called elastic or plastic.
Figure 4.9(a) and 4.9(b) show that at the end of experiment 3,the regular stress curve is
resumed and again dominated by the tensile deformation. Experiment 2 falls in-between
tests 1 and 3 and has characteristics of both experiments.
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Figure 4.9: 3 different ratios of combined tension–simple shear experiments on DC06.

AA5182 For the aluminium two tests were performed, Figure 4.10. In general, the results
of these experiments are similar to the results of DC06. It isstriking that the material fails
at the end of the load reversal in shear. The DC06 material still hardened after this point.

H340LAD Figure 4.11 shows the results for the high strength steel. Experiment 1 shows
the largest contribution to the shear deformation. In the pre-strain phase, 2 kinks are ob-
served in the stress path, Figure 4.11(c). The first kink is a nonlinearity in the shear stress
evolution, see also Figure 4.12. The second kink is the transition from elastic to plastic de-
formation. This behaviour is not dependent on the test equipment because the experiments
on the other materials do not show this behaviour. Experiment 2 in Figure 4.11(b) shows
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Figure 4.10: Combined tension–simple shear experiments for 2 different ratios on AA5182.

the same phenomenon, but at a higher stress and less pronounced. Experiment 3 does not
show the kink in the curve. Experiment 1 again shows a kink in the elastic region right
after the load reversal. The kink in the pre-strain phase occurs at�sh � 120 MPa and in
the reverse stroke at�sh � 150 MPa. In both situations the stress paths before and after
the kink are linear. Because the elastic behaviour of the metals was not investigated in this
research, this phenomenon is further left out of consideration. Experiments 2 and 3 do not
show elastic behaviour after the load reversal. Both stresspaths show a gradual trend to the
negative shear stress. Experiment 1 does show some monotonic hardening at the end of the
load reversal. Still, all the samples fail at the end of the load reversal.
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Figure 4.11: Combined tension–simple shear experiments for 2 different ratios on H340LAD.

4.4.3 Conclusion

The experiments with cyclic loading show the Bauschinger effect and the transient hard-
ening effect for all the materials. Especially, H340LAD shows a strong sensitivity to load
reversals. Experiments with combined reversed shear undertensile loading show the me-
chanical behaviour when a strain path is prescribed that in general is not used for the fitting
procedure of material models. It is a good option to validatethe material models with these
tests. The TWENTE BIAXIAL TESTER is especially suited for this research since it allows
for the accurate measurement of mechanical behaviour undercyclic loading.
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Figure 4.12: Stresses as a function of time in experiment 1 from Figure 4.11.

4.5 Orthogonal tests

In this section, experiments are presented in which the loading direction in strain space is
changed perpendicular to the initial loading direction. The TWENTE BIAXIAL TESTER can
load a specimen in simple shear and in plane strain tension, and these loading directions
were used to investigate the mechanical behaviour. As discussed in Chapter 1, the effect
of intermediate elastic unloading between 2 orthogonal deformation paths was a debated
issue in the literature. Experiments with elastic unloading are presented in Section 4.5.1.
Section 4.5.2 shows the results of similar orthogonal testsbut without intermediate elastic
unloading. The comparison of the results allows for a conclusion on this debate. Further-
more, Section 4.5.2 shows the results of experiments with gradual strain path changes. An
impression of the yield surface in stress space was obtainedfrom these experiments.

4.5.1 Cross-hardening effect

Figure 4.13 shows the results of the orthogonal test on DC06 where the material is elasti-
cally unloaded after the tensile deformation. This happensat an equivalent plastic strain
of 12 %. At the peak of the tensile curve, the actuator displacement is terminated. After
that, a small time interval is implemented, after which the tensile stress is decreased to zero
by the actuator displacement. During the time interval, thehardening due to the strain rate
disappears, hence the yield stress drops. This makes that the machine releases some of its
elastic deformation, and the tensile strain in the specimenincreases, see also Section 3.3.
This effect causes an additional plastic strain of 1.5 % and astress drop in this interval of
approximately 40 MPa. After that the tensile stress is completely released, and the shear
deformation is applied. Clearly visible is the overshoot with respect to the monotonic sim-
ple shear curve, at its highest point of 35 MPa. As the deformation continues the shear
stress remains constant until it equals the stress (at"eq � 0:26) in the monotonic test. From
there on the regular hardening path is followed.

Additionally, an experiment with a strain rate change and anorthogonal strain path
change was performed on DC06. This experiment was performedto show the correlation
between a strain path change and a strain rate change. In thisexperiment, the plane strain
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Figure 4.13: Orthogonal test with elastic unloading after the tensile deformation.
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Figure 4.14: Orthogonal test with elastic unloading after the tensile deformation. The shear de-
formation is applied at a lower rate.

deformation was applied atP"eq D 1 � 10�2 s�1 and the shear deformation was applied at
P"eq D 5 � 10�4 s�1. The result of this test is depicted in Figure 4.14. Althoughthe amount
of pre-strain is smaller in this experiment, a similar overshoot as in Figure 4.13 is observed.
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Figure 4.15: The shear curves in the orthogonal experimentswith intermediate elastic unloading.
Different strain rates are applied to investigate the qualitative difference.

The shear curve in this graph is measured atP"eq D 1 � 10�2s�1. Because the strain rate in
the experiment is lower, the shear stress is lower compared to the presented reference curve.
Qualitatively, however, the curves do correspond. From this experiment it is concluded that
a change in strain rate does not effect the strain path changesensitivity in DC06.

For modelling purposes it is interesting to know at what stress level the material enters
the plastic regime. When the evolution of the shear stress inFigures 4.13 and 4.14 are
observed, it seems as if the stress state is directly in the plastic regime. However, due to
the definition of the equivalent plastic strain, Section 3.3, there is an accumulation of noise
and the strain increases. A better representation for the assessment of the elastic–plastic
transition is given in Figure 4.15 where the shear stress is plotted as a function of the shear
strain. This figure shows that the actual elastic–plastic transition is close to the maximum
of the overshoot. This is independent of the strain rate usedfor the shear deformation.

In Figure 4.16 the results of the orthogonal test on aluminium are depicted. In contrast
with the mild steel it does not show the cross-hardening effect. In simple shear deformation,
the stress state slowly converges towards the monotonic shear curve.

The experiments with orthogonal strain path changes on H340LAD are depicted in
Figure 4.17. The overshoot in shear stress after the strain path change is 20 MPa compared
to the reference shear curve. It is noticed that the overshoot may also be related to the
abrupt elastic–plastic transition, which is clearly shownin the reference hardening curve.
The monotonic shear curve shows a peak after which it drops toa plateau and only then
starts to harden. Furthermore, the shear stress does not exactly converge to the reference
shear curve, which is emphasised by the different hardeningrates that are observed for the
reference curve and for the shear stress in the experiment with an orthogonal strain path
change.

The results of the experiments with an orthogonal strain path change on DP600 are
depicted in Figure 4.18. The characteristic overshoot in shear stress is not observed in
this experiment. The shear stress converges gradually to the monotonic shear curve. It
is noticed that the pre-strain in the tensile direction is relatively small in this experiment
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Figure 4.16: Orthogonal test on aluminium.

(7 %). The transition from the elastic to the plastic region requires approximately 2.5 %
equivalent plastic strain. When compared to the cyclic experiments, the elastic–plastic
transition is “sharper” in an orthogonal strain path changethan in a reversed strain path
change. The dislocations piled up at the LEDS are released asthe deformation is reversed,
but in an orthogonal strain path change, newly activated slip planes carry the deformation.
This explains that the elastic–plastic transition is more abrupt in the orthogonal strain path
change than in reverse loading.

4.5.2 Tracing the yield surface

The goal of this section is to investigate whether it is possible to determine the shape of
the yield surface by applying a sharp strain path change fromthe plane strain tension de-
formation to the simple shear deformation. As the stress state moves from tension to shear,
and the materials remains plastically loaded, the stress state has to follow the —potentially
evolving— yield surface. Plastic deformation during the transition means that plastic strain
is accumulated and that in turn implies hardening of the material. This effect would cause
the stress state to drift away from the initial yield surfaceshape just before the strain path
change. Experiments were performed with orthogonal strainpath changes in which the
strain path change is varied from a very sharp change to a gradual strain path change. The
accumulated strain in the strain path change would be reflected in the changing stress paths.
The algorithm to control the stiffness of the machine, see Section 3.5, was used to prescribe
the strain paths. Different settings of the parameters are employed in this algorithm for the
compensation of the stiffness of the machine to describe strain paths with different degrees
of sharpness. DC06 and AA5182 were used to investigate the concept and the material
behaviour.
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Figure 4.17: Experiment with an orthogonal strain path change on H340LAD.
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Figure 4.18: Experiment with an orthogonal strain path change on DP600.

DC06 Figure 4.19 shows the results for mild steel1. After the tensile deformation the
actuator movement is stopped and a small decrease in tensilestress is observed. This

1The results for DC06 in this work are based on van Riel and van den Boogaard (2007)
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happens within a time interval of 20 s. For test 1 to 5 the active control of the stiffness
is used to steer the strain path, test 6 is done without any compensation. The smoothness
of the change of the strain path is adapted, by allowing more tensile strain to develop
during the shear phase, see Figure 4.19(a). For DC06 6 different experiments have been
performed with different transitions from the tensile to the shear deformation. Test 1 shows
the strongest strain path change and test 6 shows the most gradual strain path change. The
tests 2-5 have intermediate transition modes. It is noted that the depicted strains are not
plastic strains, but total strains. Here, the behaviour of the machine is clearly reflected in
the experimental results. The strain paths are varied by theamount of extra tensile strain
from the onset of shear deformation, from 0.5 % to 6.5 % tensile strain in the smoothest
path.

The stresses observed in these experiments are depicted in Figure 4.19(b) and 4.19(c).
The vertical axes show the stresses as a function of the equivalent plastic strain. For a sharp
strain path change the shear stress clearly shows an overshoot during the strain path change
with respect to the monotonic simple shear test. The stress response is similar to a strain
path change with elastic unloading, as presented in Section4.5.1. A slight difference is
observed at the onset of shear deformation. In the experiment with intermediate elastic un-
loading (Figure 4.13), the stress increases with an elasticrate to the maximum shear stress,
whereas in the experiment with a continuous strain path change, the stress increases more
gradually. This is due to the strain that is accumulated in the shear and tensile deformation
and partially because the noise accumulation appears in theexperiments with continuous
strain path changes.

For the test where the strain path change gradually evolves from tensile to shear, the
shear stress slowly converges to the monotonic simple sheartest. The intermediate curves
(experiments 2-5) show responses in between these two extremes. The same holds for
the stresses in the tensile direction. The test with the gradual strain path change shows
a slowly decreasing tensile stress. The tests with more sharp strain path changes show a
rapid decrease in tensile stress. After an additional 0.15 shear strain (Figure 4.19(c)) the
effect of the strain path change is no longer observed. For a smooth transition, the tensile
stress converges to a zero stress level, but this requires more strain. Figure 4.20 shows
the stress curves of the 6 orthogonal tests in stress space. The 20 s delay after the tensile
test manifests itself here by the peak to the right in the tensile direction, after which shear
deformation continues. Test 6 is the one curve that deviatesclearly from the other five
experiments; during the transition from tensile to simple shear a little hardening can be
observed in this test. The other five tests show almost coinciding stress paths. The inset
shows a zoom of the upper left corner of the stress space. Tests 1-3 are depicted here. This
shows that the tests 1 and 2 have a small decrease in shear stress which corresponds with
the softening after the overshoot in Figure 4.19(c).

It is remarkable to see that despite the significant increasein plastic strain, the stress
paths in stress space show similar results for tests 1-5 (Figure 4.20). Figure 4.21 shows the
results of the evolution of tensile strains and the tensile stress for tests 1 and 6. Test 1 shows
an increase of tensile strain during the strain path change of approximately 1 %, but test 5
increases by 5 %. It is noticed that this strain is accumulated only during the transition from
tensile to simple shear deformation. The coinciding stresspaths can be explained by the
low hardening rate at the used pre-strains. For similar experiments with lower pre-strains
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(c) The shear stress components with the monotonic shear
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Figure 4.19: The experiments on DC06 with continuous orthogonal strain path changes.
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Figure 4.20: Stress paths for the DC06 material. The inset shows a zoom of the stress path
indicating the place the overshoot in shear stress occurs.
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Figure 4.21: The evolution of stress and strain responses inthe orthogonal tests. The thick lines
represent the tensile stresses for tests 1 and 6. The thin lines represent the tensile
strains, from tests 1 to 6.

it is expected that the stress paths would show more spread. Hence, an impression of the
shape of the yield locus can be obtained, while some plastic strain is still permissible.
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Aluminium For AA5182 similar experiments were performed, see Figure 4.22. Still, the
strain paths change from very strict (test 1) to gradual (test 4). Figure 4.22(a) shows that
in tests 1-3 with increasing shear deformation, the tensilestrain decreases. This happens
only after the strain path change and at higher shear strains. Also, the tensile stresses in
these tests increase to a level of approximately�yy D 20 MPa. This is due to the shear
deformation that induces a contraction of the material in the tensile direction which in turn
leads to a tensile stress. The decreasing tensile strain during shear is known as the pointing
effect.

The stress–strain curves show that the sharper the change ofdeformation direction, the
more shear stress is required for the transition. Like DC06,for AA5182 it is concluded that
the change of strain path is independent of elastic unloading. This is proven by test 1 and
the comparison with the test with intermediate unloading inFigure 4.16.

The stress paths of these experiments are shown in Figure 4.25. Tests 1 and 2 have a
good correspondence, but tests 3 and 4 show a trend away from the initial stress path. This
could be due to the higher hardening rate of aluminium at the strain level of the strain path
change. Only a small increase of accumulated plastic strainwould result in a higher shear
stress. For tracing the yield surface of this material, tests 3 and 4 cannot be used. For further
experiments where the shape of the yield locus is examined, the strain path change should
“use” as little accumulated plastic strain as possible and hence be as sharp as possible.

The influence of pre-strain

In this section it is experimentally investigated whether the amount of pre-strain in the
plane strain tension phase of the experiment influences the stress path during the loading
transition. For all the materials this was done for 3 or 4 levels of pre-strain. In the former
section it was argued that the transition from plane strain tension to simple shear does not
necessarily have to be sharp to reveal the shape of the yield surface. Therefore, the settings
for the strain transition as used in test 2 for DC06 were applied.

The set of orthogonal experiments on DC06 is expanded with experiments with a test
with a higher pre-strain, Figure 4.20. The shape of the stress path does not seem to change,
only the stresses are higher. This is also true for the test with a lower pre-strain. However,
at the end of the strain path change it can be seen that the stress path bends towards shear
while there is still a tensile stress present. This is more evident at the experiment where the
pre-strain is small, the stress state does not seem to followthe yield surface but translates
towards the shear state in a linear fashion. At lower pre-strains the hardening rate is still
relatively high, explaining the deviation from the yield surface. Hence, tests with a low
pre-strain give an indeterminate view of the yield surface.At higher pre-strains the shape
of the stress paths are similar and hence give a better impression of the yield surface.

For aluminium it was observed that the orthogonal strain path changes with intermedi-
ate unloading (Figure 4.25) are dependent on the amount of pre-strain. The hardening rate
at elevated pre-strains drops, which is also reflected in theresults. The experiments with
higher pre-strains show a trend that is equal to the initial experiments. Furthermore, the
experiments with a lower pre-strain show a deviating trend.Here, the more pronounced
increase in shear stress shows the influence of the higher hardening rate.

The experiments on H340LAD, Figure 4.26, and on DP600, Figure 4.27, show similar
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Figure 4.22: The orthogonal test without elastic unloadingfor AA5182.
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Figure 4.23: Stress paths for AA5182.
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Figure 4.24: Stress paths for DC06.

trends as in AA5182. Increasing or decreasing the pre-strain does not influence the shape
of the stress paths, only the size of it.
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Figure 4.25: Stress paths for AA5182.
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Figure 4.26: Stress paths for H340LAD.

Yield surface shape

The presented experiments in this section show a cross section of the yield surface through
the plane strain tension–simple shear plane. To compare theyield surfaces from the dif-
ferent materials with each other, the stress paths are normalised with respect to the tensile
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Figure 4.27: Stress paths for DP600.

stresses at the start of the strain path change. The experiments that have the largest amount
of pre-strain were selected to exclude hardening during thestrain path change. Figure 4.28
shows the results of the normalised stress paths for the 4 materials. There is a clear dis-
tinction between the aluminium and the other metals, especially at the onset of shearing. It
is noticed that aluminium shows a small kink at the start of the strain path change, which
is reproducible (see Figure 4.25), but the stress path wouldbe more in line with the other
metals if that kink was not present. The ratio of shear stressover plane strain tension is
smallest for aluminium (0.53) and highest for the H340LAD (0.60). DP600 and DC06 ini-
tially follow the same stress path as H340LAD, but separate halfway. For the Von Mises
yield criterion this ratio equals 0.50. All of these materials show a higher value than the
Von Mises ratio, indicating that a classical isotropic hardening model based on Von Mises
would not be accurate to simulate these experiments.

4.6 Conclusion

With the experiments presented in this chapter it is successfully shown that the TWENTE

BIAXIAL TESTER can be used for measuring the mechanical behaviour of sheet metal dur-
ing strain path changes. The possibility of the TWENTE BIAXIAL TESTER to control 2 axis
of deformation, plane strain tension and simple shear, madeit possible to measure the stress
and strain path in experiments with changing strain paths. The influences of anisotropy and
strain rate can be measured with this equipment. To make accurate comparisons between
different experiments based on equivalent plastic strain,it is recommended to improve its
calculation, since now noise in the measurement is accumulated in the definition of equiv-
alent plastic strain.
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Figure 4.28: Normalized stress paths in stress space.

The measurements on DC06 showed that this material is strongly sensitive to strain
path changes. Experiments on this material with orthogonalstrain path changes, with and
without intermediate elastic unloading, showed that the cross-hardening effect is indepen-
dent of the application of intermediate unloading. However, the overshoot in stress in the
experiment without unloading has more accumulated strain in the strain path change and
hence, the stress peak is shifted slightly on the strain axes. It was observed that the elastic–
plastic transition in the experiment with intermediate elastic unloading is higher than the
reference monotonic curve for the measured amount of plastic strain. The enlarged elastic
domain contributes more to the overshoot than the hardeningthat is observed subsequently.

The continuous orthogonal experiments on mild steel and aluminium show that if the
strain path change is sufficiently sharp, the yield surface can be observed in the stress
path of the experiments. The build-up of accumulated plastic strain needs to be small
enough and the hardening rate should be small in order not to deviate from the yield surface.
Finally, the yield surfaces that were detected show a trend away from the Von Mises yield
locus, indicating that the classical isotropic hardening material model with a Von Mises
yield surface cannot be applied for these experiments.

The mechanical behaviour presented in this chapter provides a good basis to fit the
(strain path dependent) material models. In Chapter 6 it is shown whether the material
models fitted to these experiments indeed give a better prediction of full simulation process.
The next chapter discusses the material models and the results of the fitting procedure.





5. Material models for non-proportional
loading

In the previous chapter, the influence of the strain path on the mechanical behaviour was
examined. It showed that both the amount and the direction ofdeformation determine the
stress–strain relation.

This chapter discusses the material models that are used to describe non-proportional
deformation. These models make extensive use of differential equations to describe the
state variables that determine the external stress–strainbehaviour. To this end, a frame-
work is presented that is used to solve the equations concurrently. Classical isotropic and
kinematic hardening is used to show the concept. The conceptis applied to two material
models that are able to describe strain path dependent material behaviour. The Teodosiu &
Hu model is a physically based model that describes the evolution of the micro-structure
of the material, and extracts the stress–strain behaviour from it. The second model is the
Levkovitch model, that describes the different aspects of strain path dependency via differ-
ent superimposed models. A characteristic feature in this model is the changing shape of
the yield surface during deformation. The performance of the different models is assessed
by the results of the fitting procedure on DC06. This materialis selected as a test case
material, since it shows the most distinct strain path sensitive behaviour.

The experiments on DC06 have shown that some orthogonal strain path changes can
be accurately described by classical material models. To discriminate between the strain
paths that induce typical strain path sensitive behaviour and those that do not, a strain path
change indicator is proposed. Implemented in a FE-code it supplies the engineer with a
tool to assess the strain path changes in the material.

5.1 Classical phenomenological material models

This section describes material models that are frequentlyused in sheet metal forming
simulations. A distinction is made between 2D and 3D material models. In the 3D-case, a
full 3 -dimensional state is described;� D

�

�x; �y ; �z ; �xy ; �yz ; �xz

�T
. In the plane stress

models it is assumed that�z D 0, and all components in thez-direction are eliminated:
� D

�

�x; �y ; �xy

�T
. Firstly, the anisotropic Hill’48 and Vegter yield criteria are discussed.

The Hill’48 model can be seen as an extension of the Von Mises model and describes the
full 3 dimensional stress state. Three mechanical experiments are required to determine the
material parameters. The Vegter criterion on the other handwas developed especially for
simulations of sheet metal and describes the plane stress state. It requires 10 mechanical
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tests, but offers greater flexibility than the Hill’48 criterion. In the following subsection it
is explained how a plane stress yield criterion can be incorporated in a material model that
describes the full 3 -dimensional stress state. This enhances the application of plane stress
yield criteria. Next, the description for isotropic and kinematic hardening is presented.
Kinematic hardening describes the shift of the yield surface through stress space, based
on the direction of plastic flow. For efficiency, the materialmodel is generally reduced to
the plane stress situations. This allows a reduction of 3 directions in the calculations. It is
explained that in the case of kinematic hardening, an inconsistency with the 3D situation
exists. An algorithm is presented such that the consistencyis preserved.

5.1.1 Yield criteria

The yield criterion describes the stress state in which a material changes from reversible,
elastic mechanical behaviour to irreversible, plastic behaviour. In this work the focus is
on the Hill‘48 and Vegter yield criteria. Both models assumethat anisotropy is symmetric
around the rolling, transverse and thickness directions. The Hill’48 is used because it is
widely applied and it has a simple mathematical description. The Vegter model is more
complex, but offers more freedom for accurate description of the initial yielding behaviour.

Hill yield criterion The Hill’48 criterion is given in the format of (2.1):

' D F.�y ��z/2 CG.�z ��x/2 CH.�x ��y/2 C2L�2
yz C2M�2

zx C2N�2
xy �x2 (5.1)

The values ofF , G, H , L, M andN describe the anisotropy of the material. The value
of x can be scaled with the anisotropy parameters. In this workx D

p
G C H�f such

that the uniaxial flow stress inx-direction equals the flow stress�f . It is computationally
convenient to write the yield function as a homogeneous function of the first degree. Also
introduced is the tensorM with the material parameters (De Borst and Feenstra, 1990):

� D
p

� W M W � � �f (5.2)

The tensorP can be represented in matrix format:
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(5.3)
For the set of parameters whereF D G D H D 1 andL D M D N D 3 the Von Mises
yield criterion is obtained.

This criterion can be easily converted to a plane stress model, i.e. where the thickness
stress and the shear stresses out of the plane of the sheet are0 (�z D �yz D �xz D 0).
Hence Equation (5.1) reduces to:

� D
q

.G C H/�2
x C .H C F /�2

y � 2H�x�y C 2N�2
xy �

p
G C H�f (5.4)
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Figure 5.1: The shape of the yield locus for different valuesof R0.

TheR-values that are determined in tensile tests can be used to determine the parameters
of the plane stress criterion:

F D 2R0

R90 .1 C R0/
(5.5)

G D 2

1 C R0

(5.6)

H D 2 � G (5.7)

N D .2R45 C 1/ .R90 C R0/

R90 .1 C R90/
(5.8)

Finally, Figure 5.1 shows the influence of different values for R0 in plane stress space. With
higher values for theR-value, the yield surface elongates unrealistically alongthe�x D �y

axis.

Vegter criterion The Vegter yield function (Vegter and van den Boogaard, 2006) de-
scribes a yield function based on interpolation between measured points on the yield sur-
face. The yield function is described in the principal stress space and uses Bezier interpo-
lation to connect the measured yield stresses in equi-biaxial, plane strain tension, uniaxial
tensile and shear tests to define a yield locus, see also Figure 5.2(a). This leads to four
stress points in the region where�x > �y . Stress situations where�x < �y can be deter-
mined if the sample is rotated by90ı. Compressive stresses were not measured, but were
covered by the assumption that the material initially behaves identically in tension and in
compression, hence the yield locus is point symmetric around the origin.

In the experiments not only the yield stress was measured, but also the strain and its
direction were determined. Drucker’s postulate states that the plastic flow is perpendicular
to the yield surface and this is applied to the measured strains to determine the local tangent
of the yield surface. With the stress points and their tangents available, second order Bezier
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Figure 5.2: The construction of the Vegter yield criterion.

curves can be constructed between the stress points, see Figure 5.2(b). A stress state in the
2 -dimensional stress space is represented by a vector:

E� D
�

�1

�2

�

(5.9)

which is used in the definition of the stress state:

E� D �eq

�f

�

E�i C 2ˇ
�

E�h � E�i

�

C ˇ2
�

E�i C E�j � 2E�h

��

ˇ 2 Œ0; 1� (5.10)

The hinge pointE�h is defined by the intersection of the tangents of the 2 measured flow
stresses;E�i andE�j . The yield surface is aC 1 continuous yield function. The term between
square brackets indicates the position on the yield surfacevia the scalař and the ratio
�eq=�f determines the magnitude of the stresses. This definition isused in the traditional
yield criterion setting, see Equation (2.1)

Anisotropy of the sheet is captured by using the flow stressesof the experiments at
different angles with respect to the rolling direction. Theflow stresses at intermediate
angles are defined by a harmonic interpolation function.

For the implementation of this model, experiments in three directions (0ı, 45ı and90ı)
are required to determine the 17 material parameters. A simplification was presented to
decrease the number of material parameters and the number oftests, (Vegteret al., 2009).
This adds to the usability of the model.

5.1.2 Integrating a plane stress yield criterion in a 3D mate rial model.

For sheet metal forming simulations, it is normally assumedthat the blank is in a plane
stress state. Simulations of sheet metal forming processesare sensitive to the definition
of the yield criterion, and much effort has been put into the development of accurate yield
descriptions. Usually, yield criteria for sheet forming are defined in 2D (Banabicet al.,
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2004; Vegter and van den Boogaard, 2006), which allows a moresimple definition than
in three dimensions. However, hardening models are increasingly complex and take into
account the full 3D stress state. Additionally, more advanced elements (e.g.solid shells),
also require a full 3D stress state. Hence, a method is required to incorporate the plane
stress yield criteria in a 3D material model. To this end, thestress in thickness direction
and the shear stress in the plane of the sheet need to be incorporated in the definition of
the equivalent stress. Based on the assumption that the yielding behaviour is independent
of hydrostatic stress, a general description of a plane stress yield criterion in a 3D material
model is presented.

The general definition of a yield criterion is given in Equation (2.1) and incorporates
the definition of the equivalent stress. In the case of a planestress material model the
equivalent stress is given by:

�ps
eq D �ps

eq

�

�x; �y ; �xy

�

(5.11)

Obviously,�ps
eq is not a function of�z , �yz and�zx . The goal is to eliminate these out-of-

plane stresses from the stress vector in the 3D situation. Without changing the value of the
equivalent stress, a hydrostatic stress with the magnitudeof the stress inz-direction can be
added such that the third component in� 3D equals 0:
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(5.12)

The shear stresses in regular yield criteria are decoupled from the normal stresses and from
the other shear stresses. This indicates that the contribution from �yz and �xz can be
defined independently, based on a arbitrary 3D yield criterion. The general description of
a plane stress yield criterion in a 3D stress state then reads:

�3D
eq D �3D

eq
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�ps
eq .� ps/ ; �xz ; �yz
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=
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(5.13)

in which �
ps
eq is the plane stress definition of the yield criterion and�3D

eq is a 3D yield
criterion from which only the shear contributions are used.

For the use of Equation (5.13) in a material model, the derivatives of�3D
eq with respect

to the stresses are required. Because all stresses except�z are explicitly calculated in Equa-
tion (5.13), these derivatives are easily determined. The derivative with respect to�z needs
to be determined in some other way, because this component isnot explicitly included in
the definition of�3D

eq . From the assumption that the yield criterion is independent of the
hydrostatic stress, it follows that the derivative of the�3D

eq is in the deviatoric plane. Hence,
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The new yield criterion is generic with respect to the applied plane stress yield criterion
and shows the same convergence in the return mapping algorithm as the plane stress yield
criterion.

To show the concept of a plane stress yield criterion in a 3D yield function, the Von
Mises criterion is used. The general description of this yield function for three dimensions
description is:

�3D
vM D

q

�2
x C �2

y C �2
z � �x�y � �y�z � �x�z C 3�2

xy C 3�2
yz C 3�2

zx (5.15)

When a plane stress situation is described, the yield criterion reduces to:

�
ps
vM .� ps/ D

q

�2
x C �2

y � �x�y C 3�2
xy (5.16)

The plane stress definition is implemented in the 3D yield function according Equation (5.13):
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C 3�2
yz C 3�2

zx (5.17)

Now, the desired plane stress yield condition replaces�
ps
vM , such that a full 3D yield criterion

is obtained based on the chosen plane stress yield criterion.

5.1.3 Isotropic and kinematic hardening models.

The evolution of the flow stress during deformation can be modelled either phenomenolog-
ically, or based on the evolution of the micro-structure. This latter class of material models
takes into account dislocation storage, and often uses multiple state variables to describe the
history of deformation (van Liempt, 1994; Roterset al., 2000; Nes and Marthinsen, 2002).
Here, we limit ourselves to phenomenological material models, because of their ease of
use and their efficiency in FE simulations. The general description of a yield function is
presented in Equation (2.1).

An often used isotropic hardening law is the Swift law:

�f D C ." C "0/n (5.18)

It requires only 3 parameters and can easily be fitted to a uniaxial tensile test. The Bauschinger
effect, observed in cyclic tests (Section 4.4), cannot be modelled with isotropic hardening
models. To this end kinematic hardening models were developed that shift the yield sur-
face in stress space, while the size of the yield surface remains constant. Upon a load
reversal, the material yields earlier compared to the isotropic model, hereby describing the
Bauschinger effect in a load reversal. The direction of the shift is either in the direction of
the plastic flow (Prager assumption) or in the direction of the stress rate (Ziegler assump-
tion). If a Von Mises yield criterion is used these directions are equal. The yield surface can
only move in the deviatoric plane. In kinematic hardening models the history of the stress
path is stored in the back stress and it is therefore necessary that the evolution equations of
this group are rate-type equations. The Armstrong–Frederick kinematic hardening is often
used to describe the Bauschinger effect:

P̨ D P�
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@�
� Al ˛

�

(5.19)
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Ak describes the hardening rate. The evolution of the back stress is dependent on the
amount of pre-strain via the second term on the right hand side. The material parameter
Al controls the contribution of the pre-strain. It allows for agradual increase in flow stress
after the load reversal and mimics the the transient hardening effect after a load reversal.
The direction of the evolution is determined by the direction of plastic flow@�=@� . This
model can be improved by simply defining a set of these laws in one kinematic hardening
law (Chaboche, 1991; Chunet al., 2002):
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n
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iD1

P�
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i
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l ˛i

�

(5.20)

It was demonstrated that this model gives accurate results for a loading history with 10 load
reversals (Chaboche, 1991).

The kinematic hardening model presented here can describe the transient hardening
effect in cyclic loading, but not the work hardening stagnation. To constrain the evolution
of the back stress after a load reversal, and hereby mimic thework hardening stagnation,
a bounding surface can be introduced into the model. It evolves in the direction of the
plastic flow, but at a lower rate than the back stress. After a load reversal, the back stress is
constrained by the bounding surface, but after some monotonic deformation, the bounding
surface again develops in the current deformation direction. This allows the back stress
to evolve further (Huétink, 1991; Yoshida and Uemori, 2002, 2003). These models are
not used in this work, but may be valuable in simulations of processes dominated by load
reversals.

5.1.4 Kinematic hardening in the plane stress formulation

In sheet metal forming simulations, the stress developmentin the thickness direction is
normally ignored because the stress in this direction is approximately zero. In full 3-
dimensional material models, the strain in the thickness direction is iteratively changed
to find the plane stress situation. By implementing the planestress boundary condition
directly in the material model, the iterations on the plane stress conditions are avoided, re-
sulting in a time efficient algorithm compared to the full 3D algorithm. Another reason for
the use of plane stress material models is that yield criteria are developed specifically for
plane stress situations, since this is less complicated then developing a yield criterion in 3D.
A plane stress material model is derived from a 3D material model by simply eliminating
the thickness components from the algorithm. In this section it is investigated whether such
a conversion from the 3D material model to the plane stress material model is consistent1.
Classical material models are based on (combinations of) isotropic and kinematic harden-
ing laws. A 3D material model with only isotropic hardening can be consistently converted
to a plane stress algorithm, by eliminating thez-direction and adapting the elasticity-matrix,
as is illustrated in many textbooks (Chen, 1994; Zienkiewicz and Taylor, 2005). For kine-
matic hardening models, however, it is shown that the thickness direction cannot be simply
eliminated. The back stress in thez-direction needs to be taken into account to give consis-
tent results. Even for yield criteria that are only defined inplane stress, a compensation is

1This work was presented in van Riel and van den Boogaard (2007)
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required. It is noted that the yield functions do not need to be adapted themselves, because
the compensation acts on the return mapping algorithm itself.

Figure 5.3 illustrates the difference between the a plane stress and 3D material model.
The direction of plastic flow in a uniaxial test in a 3D material model is oriented within the
deviatoric plane. The plastic flow in a uniaxial tensile loading has components in the plane
of the sheet (x andy), but also in the thickness (z) direction (Figure 5.3(a)). A plane stress
material model employs the yield surface without a component in the thickness direction,
as it is represented in Figure 5.3(b). The direction of plastic flow lies within the plane
of plane stress and does not have a component in thez-direction. The major difference
between a plane stress algorithm and a 3D material model is the missingz-component in
the plane stress material model.

A 3D material model with isotropic hardening is consistently converted to a plane stress
algorithm by eliminating the thickness components from thealgorithm. The missingz-
components do not affect the overall stress state or the convergence of the material model.
This makes sense because isotropic hardening is independent of the direction of plastic
flow. Kinematic hardening, however, is dependent on the direction of plastic flow. A com-
parison is presented in Figure 5.4 between a kinematic hardening model based on the plane
stress algorithm and a 3D material model that is iterativelysolved for the plane stress situ-
ation. Again, the uniaxial tensile test (inx-direction) is employed with the Von Mises yield
criterion. Figure 5.4(b) shows the consequence of the different plastic flow directions. The
yield surface in the 3D material model shifts in stress spaceparallel to thex-axis, hereby
preserving the uniaxial tensile stress state. The back stress evolution in the 3D material
model includes a component in thez-direction. But because the plane stress situation is
required:

�z D �z C ˛z D 0 H) �z D �˛z (5.21)

In other words a hydrostatic stress is added to� such that�z D �˛z and�z D 0. The stress
state moves along the hydrostatic axis to the plane of the plane stress state. The position
of the stress state on the yield surface remains at the uniaxial stress point, because only

�x �y

�z

@'
@�uni

(a) The deviatoric plane in 3D stress
space.

�x

�y

@'
@�uni

(b) The plane stress situation.

Figure 5.3: The Von Mises yield surface and the direction of plastic flow in a uniaxial tensile test
in thex-direction.
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a change in the hydrostatic stress is applied. For the evolution of the back stress in the
plane stress algorithm, the representation in Figure 5.3(b) is applied. Because there are no
out-of-plane components, there is also no evolution of stresses in the thickness direction
(�z D �z D ˛z D 0). The direction of plastic flow points “down” in Figure 5.3(b), and
thus the yield surface shifts in that direction. At the same time, the uniaxial stress state
requires that�y D 0, leading to a shift of the stress state over the yield surfaceto the plane
strain point in Figure 5.4(b). The larger contribution of hydrostatic stress in the 3D material
model leads to a higher tensile stress compared to the plane stress algorithm.

To arrive at a situation where the plane stress and 3D algorithm are consistent,̨z and�z

have to be taken into account in the plane stress algorithm. By including the effective stress
�z in the definition of the equivalent stress, in the direction of plastic flow, a consistent
conversion is obtained:

�eq D �eq
�

�x; �y ; �z; �xy

�

and
@�

@�
D @�

@�

�

�x; �y ; �z ; �xy

�

(5.22)

The value of�z is easily determined because˛ evolves according to the direction of plastic
flow, which lies in the deviatoric plane. Hence,˛ is also deviatoric and thus together with
Equation (5.21) we obtain:

˛z D �
�

˛x C ˛y

�

H) �z D �˛z D
�

˛x C ˛y

�

(5.23)

The rest of the material model remains the same, only Equations (5.22) and (5.23) need to
be implemented. It is emphasised that�z and˛z are only used to determine the consistent
values in thex- andy-directions for� and@'=@� .

It is recognised that the yield criteria defined for sheet metal forming are often plane
stress models that do not include the requiredz-component. These models show the same
deviation in the stress evolution and therefore require theadaptation. Because the yield
criterion is independent of hydrostatic pressure, the method from Section 5.1.2 can be
applied. Equation (5.22) can be used in plane stress yield criteria by eliminating the�z
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component. Again, this is done by adding a hydrostatic stress to the normal components,
such that thez-component equals 0:
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This compensation allows for a consistent conversion from the 3D material model to the
plane stress model, even with a plane stress yield function.

5.2 Generic return mapping algorithm

For the implementation of a material model in a Finite Element code, a stress update al-
gorithm and the consistent stiffness are required. In this section a generic algorithm is
presented that is used both for the stress update and to calculate the stiffness matrix. This
model describes isotropic and kinematic hardening.

5.2.1 Stress update

This section describes the algorithm to determine the stress after a strain increment. The
algorithm maps the stress back to the yield surface, explaining its name:return mapping
algorithm. A set of three differential equations will be used to determine the evolution of
three state variables:
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(5.25)

The equations are solved with the Euler-backward procedure. Hence, the equations are
evaluated with the state variables at the end of the load step. The general update for the
state variables in this procedure is evaluated asVnC1 D Vn C �V, wheren denotes the
number of the load step. The yield criterion is evaluated in terms of the effective stress�
and the equivalent plastic strain at the end of the load step:

� D �eq
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�nC1

�

� �f
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"eqnC1
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(5.26)

Through discretisation of Equation (2.5), the plastic strain increment depends on the deriva-
tive of the yield surface at the end of the load step:
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(5.27)

The stress increment is evaluated by Hooke’s law:

�� D E W �"e (5.28)

The externally applied strain is split in to an elastic part and a plastic part:

�" D �"e C �"p (5.29)
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Equations (5.28) and (5.27) are combined with (5.29) to givethe following evolution in
terms of strain:
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(5.30)

Kinematic hardening, to describe cyclic behaviour, is included via the Armstrong–Frederick
law from (5.19):
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To solve the above set of equations, they are cast in to a set ofthree residual functions:
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R� is adapted with a minus sign to obtain symmetry in the Jacobian. The 3 residual func-

tions are combined toR D
�

R� ; R˛ ; R�

�T
. All the evolution equations are met when

R D 0, but the functions are nonlinear and require an iterative procedure to findVn+1. A
Taylor series expansion is used, which is evaluated as:
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The derivative of the residual functions are used to construct the Jacobian of this set of
equations. Note that that because� D � � ˛, the derivatives of the yield function can be
interchanged easily:
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These properties are used to determine the Jacobian of the set of the residual functions:
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(5.38)
The obtained matrix is almost symmetric, apart from the contribution in J(2,3). The first
term in this entry causes a non-symmetric matrix. Only when linear hardening is assumed
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Figure 5.5: Iteration scheme for the return mapping algorithm.

(Al D 0), the Jacobian is symmetric. This Newton–Raphson system converges quadrati-
cally in the neighbourhood of the solution.

The algorithm presented here is generic in the sense that it is not dependent on the
chosen yield locus and isotropic hardening law. However, the applied kinematic hardening
model is an explicit function within this RMA. Another type of kinematic hardening re-
quires adaptation of Equations (5.34) and (5.38). To implement the yield locus definition,
the first and second derivatives with respect to the stress are required. For the isotropic
hardening law, only a function evaluation and the derivative with respect to the equivalent
plastic strain is required. This considerably increases the flexibility of the algorithm.

Figure 5.5 shows schematically the loop that describes the RMA. The input consists
of a new strain increment�". A trial stress (� tr) is determined by assuming that the total
strain increment is elastic. This assumption is checked with the yield criterion. If the load
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increment is indeed elastic, the final stress equals the trial stress. If the material deforms
plastically, the return mapping algorithm is entered and the residual functions are used to
find the updated values for� , ˛ and"

p
eq. When the norm ofR is smaller than a prescribed

toleranceıt , the solution is found.

5.2.2 Stiffness matrix

At the global level of the FE simulation, the material stiffness at the integration points is
required. The local stiffnesses are then assembled to a complete stiffness of the structure.
For the small strain theory that is used here, the stiffness needs to be determined in terms
of:
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(5.39)

The derivative can be obtained via the RMA determined in the stress update procedure.
Equation (5.36) is used to determine the stress, but it is expressed in terms of strains. A
perturbation method is used to determine the stiffness:
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From this set of equations the desired relation can be isolated. This can be done in terms of
every individual matrix component, but it is more straightforward to isolate only the four
submatrices of the complete Jacobian:
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The stiffness matrix is easily calculate from this:
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Again, this relation is established independently of the chosen yield surface and the isotropic
hardening law.

Both for the return mapping algorithm as for the consistent stiffness matrix, dedicated
algorithms were developed. Importantly, the combination of the Von Mises yield locus and
linear isotropic/kinematic hardening can be evaluated explicitly, even for an Euler back-
ward algorithm. Besides, the Von Mises model offers advantages because of its favourable
mathematical description. The concept presented here doesnot have that advantage, but
does have the benefit of flexibility and generality. Additionally, this concept can be used
for any material model that is evaluated in this manner.

5.2.3 Application to DC06

This subsection discusses the application of the generic return mapping algorithm to the
experimental results of DC06. The monotonic, cyclic and orthogonal experiments were
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Table 5.1: TheR-values for DC06.

R0 R45 R90

1.85 2.06 2.51

simulated using the generic return mapping algorithm. The Hill’48 material model was
used, with theR-values as presented in Table 5.1. In the following, isotropic and combined
isotropic/kinematic hardening models are used.

Figure 5.6 shows the results of the monotonic experiments for the plane strain tension
tests (in RD and TD), and the simple shear experiment. The equivalent stress–strain curves
were determined by the Hill’48 yield criterion and theR-values from Table 5.1. In the first
5 % of strain, the three hardening curves correspond. The plane strain tensile tests show
good agreement for the entire length of the hardening curve.The shear test on the other
hand shows a deviation that increases slightly with additional strain. Due to the rotation in
the material, other slip planes are activated, leading to a different hardening behaviour. The
concept of equivalent stress and strain appears to be invalid for higher strains.

The experiments were additionally used to determine the material parameters for the
Swift law in an isotropic hardening model with the Hill’48 yield criterion. In the fitting
procedure, an objective function is defined that describes the accumulated stress difference
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Figure 5.6: Results for the monotonic experiments and the Swift law in equivalent stress–strain
space.
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Figure 5.7: The prediction of the classical hardening models in the cyclic tests.

between the simulations of the experiments and the experimental results. The least squares
method was used to determine the material parameters. To prevent the plane strain tension
tests prevailing in the fitting procedure, more weight was attributed from the shear test to
the objective function. The final result is shown in Figure 5.6 and the parameters can be
found in Table A.3.

To describe the mechanical behaviour in cyclic loading, thekinematic hardening mod-
els were developed. The generic return mapping algorithm was used with Armstrong–
Frederick kinematic hardening and isotropic hardening according to Swift. This is denoted
as the “combined” model. The experiments from Figure 4.5 andthe two plane strain ten-
sile tests were used in the fitting procedure. The monotonic simple shear experiment is
not included since the cyclic experiments already describethe initial monotonic hardening
in simple shear. Figure 5.7 shows 2 cyclic experiments on DC06 and the results of the
models with isotropic and combined hardening. In the pre-strain phase, the material mod-
els perform similarly, although both underestimate the stress at the end of the first stroke.
After the first load reversal the models are initially not faroff, but the deviation increases
as deformation continues. Neither of these models were ableto capture the work hardening
stagnation, but the combined hardening model describes theexperiments better. In partic-
ular, the experiment with a large pre-strain shows that an isotropic material model cannot
describe cyclic loading, due to the large Bauschinger effect. The combined model shows a
better performance, but the prediction after the second load reversal is still not satisfactory.

The performance of the isotropic and combined hardening model was additionally as-
sessed with the experiments constituting an orthogonal strain path change, see Figure 4.13.
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Figure 5.8: The prediction of the classical hardening models in the orthogonal test with unloading.

The results of the simulations are presented in Figure 5.8. The initial plane strain tension
is accurately described, but the subsequent shear stress after the strain path change is not
captured. The prediction of the combined hardening model ofthe shear stress is lower than
the prediction of the isotropic hardening model. In the combined model, the hardening
is divided over a contribution to the shift of the yield surface and a “growth” of the yield
surface. If more hardening is attributed to the shift of the yield surface, size of the yield
surface will remain smaller. Upon an orthogonal strain pathchange, the flow stress in the
new direction will be lower than the flow stress predicted by the isotropic model. Hence, a
combined model gives by definition a poor description of the mechanical behaviour in an
orthogonal strain path change. After some more shear deformation, the simulation results
coincide again with the experiments, but the characteristics of the mechanical behaviour
cannot be captured with these models.

From the experiments investigated here, it is concluded that the monotonic hardening
behaviour is well described by both the isotropic and the combined hardening model. The
prediction of cyclic behaviour with the kinematic description is better than the isotropic
model, but it is still not satisfactory. The simulation of the orthogonal experiment shows
that neither model can describe the characteristic overshoot after the strain path change.
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5.3 The Teodosiu & Hu model

To describe the strain path dependent mechanical behaviourin sheet metal (see Chapter 4),
Teodosiu and co-workers (Teodosiu and Hu, 1995; Teodosiu, 2005; Uenishi and Teodosiu,
2004; Uenishiet al., 2005) developed an extensive material model. The philosophy behind
this model is that the specific strain path dependent mechanical behaviour is caused by the
patterning of the dislocation structure. Via this approachthe model is able to describe the
Bauschinger effect; the transient hardening and the work hardening stagnation after a load
reversal. And in particular, the characteristic overshootin stress after an orthogonal strain
path change can be described.

Firstly, the structure of the Teodosiu & Hu model is presented. Phenomenological
models are used to describe the evolution of the different aspects of the micro-structure.
In the next subsection, the implementation of the evolutionequations in the framework of
Section 5.2 is discussed. Finally, results of the fitting procedure on DC06 are presented.

5.3.1 Description of the model

The main component in this model is the 4th order tensorS that describes the influence of
the micro-structure on the mechanical behaviour. It describes the build up and breakdown
of LEDS and its polarity, microbands and the cellular structure. Still, in its essence, this
material model is a combined isotropic/kinematic hardening model where the parameters
that were determined in Section 5.2 become functions of the strain history. The dislocation
structure contributes to the strain path dependent behaviour via the back stress evolution.
If an orthogonal load path is applied, the back stress will increase rapidly to mimic the
overshoot, and in a load reversal the evolution of the back stress is such that the Bauschinger
effect, the transient hardening and the work hardening stagnation is described. Depending
on the loading direction, the different components inS contribute to the total strength ofS.

The evolution of the strength of the dislocation structureS is a function of the polarity
of the LEDS. It is denoted with the second order tensorP and describes, depending on the
loading direction, the pile-ups of dislocations on the LEDS. P controls the Bauschinger
effect in a load reversal. For a well-annealed material, allthe initial values ofS andP are
equal to0.

At a macro level, kinematic and isotropic hardening are described. The kinematic hard-
ening evolution is completely dependent on the strength of the dislocation sheets. The
isotropic hardening is dependent on the strength of the dislocation sheets, but the cellu-
lar structure, indicated byR, also contributes to the isotropic hardening.R is completely
separated from the evolution of the other internal state variables.

A disadvantage of the model is the high number of material parameters (13) that are
required to describe the evolution of the internal state variables. To determine the material
parameters, monotonic, cyclic and orthogonal experimentsare required. For materials that
show limited strain path sensitive behaviour, some of the internal state variables can be
assumed equal to 0. This leads to a reduction in the number of material parameters that
need to be determined (Haddadiet al., 2006). Strain rate sensitivity was added to the
isotropic hardening model (Uenishi and Teodosiu, 2004), but the evolution of the kinematic
hardening remains rate independent.
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Yield stress and yield function

In the Teodosiu & Hu model, the classical yield function is employed, Equation (2.1). The
flow stress is written as:

�f D �0 C R C m jjSjj (5.43)

Where�0 is the initial yield stress,R describes the isotropic hardening due to the cellular
dislocation structure and the last term describes the isotropic hardening due to the strength
of the dislocation sheets. The influence ofS is distributed across the isotropic and kine-
matic hardening via the material parameterm.

Kinematic hardening is employed via the effective stress inthe calculation of the equiv-
alent stress, as in Equation (2.6). The evolution of the backstress is modelled by an
Armstrong–Frederick-like saturation law:

P̨ D C˛ .˛sN � ˛/ P� (5.44)

whereC˛ is a material parameter that defines the saturation rate. Thesaturation value of
the back stress is defined by˛s, which is not a material parameter, but an internal variable.
It is defined in the next section. The back stress develops in the direction of the normalised
gradient of the yield function:

N D
@�
@�
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ˇ

ˇ

ˇ

ˇ

ˇ
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ˇ

ˇ

ˇ

ˇ

(5.45)

Strength of the dislocation structure

The strength of the dislocation structure is described using the internal state variables; the
tensorS and the scalarR. The pile-ups of the dislocations at either sides of the LEDSis
described by the polarityP, which is a state variable. Upon a deformation reversal, the
dislocations are released from their position and are able to migrate to the cell interiors.
The evolution equation reads:

PP D Cp .N � P/ P� (5.46)

The polarity converges to the current loading directionN, with the saturation rateCp. For
a well-annealed material, the initial values ofS, P andR are zero.

The tensorS is divided into two parts; a part that contains the strength in the present
direction of deformation and a part that contains the strength of the latent structure,SD and
the tensorSL , respectively.SD is a scalar value because it represents solely the strength in
the current loading direction:

SD D N W S W N (5.47)

The latent strength of the dislocation structure is determined by subtracting the directional
part fromS:

S D SD C SL H) SL D S � SDN ˝ N (5.48)

If the decomposition into two orthogonal components is based on a normalised tensor, this
allows the use of an additional equation:

jjSjj2 D S2
D C jjSL jj2 (5.49)
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In the following, the evolution of the state variables in theTeodosiu & Hu model is pre-
sented. Here, the directional and the latent parts of the dislocation structure are considered
as individual state variables. The evolution equation forSL reads:

PSL D �Cl

� jjSLjj
Ss

�nl

SL
P� (5.50)

The term between brackets incorporates the influence of the amount of pre-strain.Cl de-
scribes the saturation rate ofSL. Initially, SL D 0 and according to the evolution equation
it cannot increase. Indeed, during monotonic loading,SL remains zero. After a strain path
change however, a new decomposition is made between the directionalSD and the latent
SL part, based on the new loading directionN.

The evolution of the strength of the dislocation sheets is calculated by the individual
evolution of the directional and latent parts of the tensorS. In Section 5.3.2 this will be
discussed more thoroughly. The evolution equation for the strength in the current loading
direction is described using:

PSD D Cd .hP .Ss � SD/ � h˛SD/ P� (5.51)

Where the parametersCd andSs denote the saturation rate and the saturation value, re-
spectively. To complement Equation (5.51), the contribution of the kinematic hardening is
introduced via:

h˛ D 1

2

�

1 � ˛ W N

˛s

�

(5.52)

The range ofh˛ is .0; 1/, depending on the loading scenario. For monotonic loading,
.˛ W N/ =˛s will converge to1, henceh˛ D 0. This will speed up the evolution ofSD in
Equation (5.51). For orthogonal loadingh˛ ! 1

2
and for reverse loadingh˛ ! 1. For re-

verse and orthogonal loading, the development ofSD is decreased. The reverse loading re-
sults in the largest stagnation. The saturation value for the back stress̨s in Equation (5.52)
is a function of the dislocation structure:

˛s D ˛0 C .1 � m/

q

S2
D C r jjSL jj2 (5.53)

In this equation,̨ 0 is a material parameter that denotes the initial saturationvalue for the
back stress. The material parameterm defines the division of the contribution ofjjSjj to the
isotropic hardening Equation (5.43), or to the kinematic hardening Equation (5.53). In the
last equation, the definition ofjjSjj is adapted by the parameterr to describe the stress–strain
relation in an orthogonal strain path change.

In the load step directly after an orthogonal strain path change, the decomposition ofS
into SD andSL changes. The decomposition is made based on the current loading direction
via Equation (5.47). Notice thatS itself does not change. Ifr > 1, the contribution of the
latent dislocation structure exceeds the contribution from SD before the strain path change.
This results in a sudden increase in˛s, and hence in a rapid build-up of kinematic stress in
the new loading direction. This effect mimics the overshootobserved in the experiments.
Next, SL decreases via Equation (5.50) and the stress curve will coincide again with the
regular hardening curve.
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The value ofhP is determined by the following function:

hP D
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(5.54)

This function is continuous inP W N and is used to mimic the mechanical behaviour after a
load reversal. With increasing monotonic loading,P W N ! 1, SD ! Ss andhP converges
to 1. This leads to the maximum contribution of.Ss � SD/ to PSD in Equation (5.51). Upon
a load reversal,P W N ! �1. The contribution of the polarity toSD will stop because
hP ! 0. Additionally, becauseh˛ D 1 in a load reversal,SD will decrease.

The isotropic hardening due to the cellular structure is described with the variableR. It
is not dependent on the strain rate direction, only on the equivalent plastic strain rate:

PR D Cr .Rs � R/ P� (5.55)

The isotropic hardening converges to the saturation valueRs by the saturation rateCr. This
equation is equal to a Voce relation. It is noticed that this hardening law can easily be
substituted by any other hardening model that is a function of "eq.

The Teodosiu & Hu model requires the following 13 material parameters:Ss, Cd,
Cl,C˛, ˛0, Cr , Rs, Cp, np, nl , r , �0 andm.

5.3.2 Implementation

This section describes how the Teodosiu & Hu model can be implemented in the framework
of the generic return mapping algorithm. In total, 7 residual functions are used to update all
the state variables in the model:� , ˛, SD, SL , P, R and�. The model initially proposed by
Teodosiu and Hu (1995) is not conclusive on the evolution of the strength of the dislocation
structureS, a proper decomposition ofS in SL andSD was ambiguous. In this section a
method is proposed that leads to an algorithm that realistically describes the evolution of
SL andSD.

The decomposition ofS

The approach followed to determine the generic return mapping is followed here to derive
a stress update for the Teodosiu & Hu model. The Euler backward method is applied and
a Newton–Raphson procedure is used to determine the state variables at the end of a load
increment. An essential feature of the discretisation of the model is that the strength of the
dislocation structureSn is decomposed intoSn

L andSn
D at thestartof a load increment. The

Euler backward method prescribes that the update of the state variables is done, based on
the direction of plastic flow at theendof the increment:

Sn
D D N

nC1 W S
n W N

nC1

S
n
L D S

n � Sn
DN

nC1 ˝ N
nC1



5.3 The Teodosiu & Hu model 83

Within the stress update,Sn
D andS

n
L are considered as initial values, but they are still vari-

able, since they depend onN
nC1 which on its turn is dependent on the stress state at the end

of the increment. After the decomposition,Sn
D andS

n
L are increased with their respective

increments:

SnC1
D D N

nC1 W S
n W N

nC1 C �SD

S
nC1
L D S

n � Sn
DN

nC1 ˝ N
nC1 C �SL

The strength of the complete dislocation structure is then evaluated as:

S
nC1 D SnC1

D N
nC1 ˝ N

nC1 C S
nC1
L (5.56)

It is noticed that Wanget al. (2008) have rewritten the incremental equations in a proper
rate form. The method introduced here does not differ effectively from their work.

The return mapping algorithm

In the former section it was explained that during the load increment, the direction of plastic
flow remains constant. The incremental form of the Equation (5.50) then reads:

�SL D �Cl
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ˇS
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ˇ

Ss

!nl

S
nC1
L �� (5.57)

It can be seen in this equation that every component of�SL is proportional to the compo-
nents ofSnC1

L . Hence, the incremental increase ofSL can be written as:

�SL D � S
n
L (5.58)

Thus, in the return mapping algorithm, only� needs to be determined which is more effi-
cient than iterating for every single component. Substitution in to Equation (5.57) yields:

� D �Cl��
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!nl

.1 C �/ (5.59)

The residual functions for the stress, the back stress and the plastic multiplier are equal
to the residual functions in the generic return mapping algorithm. The complete set of
equations that need to be solved in the Teodosiu & Hu model arepresented in Equations
(5.61) to (5.67). To determine the state variables at the endof every load increment, the
same procedure as in Section 5.2 is applied. The set of state variables that are determined
are:
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The stress, back stress and the plastic multiplier are described by similar equations as the
classical hardening laws. ForSD, Sl , P andR the evolution equations (5.51), (5.59), (5.46)
and (5.55), respectively.

The following equations show the residual functions. The subscripts denoting thei -th
iteration and the subscripts denoting the load steps are omitted where possible, to enhance
readability:

R" D �" � E
�1�� � ��

@�

@�

ˇ

ˇ

ˇ

ˇ

nC1

(5.61)

R˛ D �˛ .1 C �� C˛/ � C˛ .˛sN � ˛n/ �� (5.62)

RSD D �SD � Cd
�

hP
�

SS � Sn
D � �SD

�� h˛

�

Sn
D C �SD

��

�� (5.63)

RSL D � C Cl
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.1 C �/ �� (5.64)

RP D �P
�

1 C Cp ��
�

� Cp .N � Pn/ �� (5.65)

RR D �R .1 C Cr ��/ � Cr .Rs � Rn/ �� (5.66)

R� D �
�

�eq �
�

�0 C RnC1 C m
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ˇS
nC1

ˇ

ˇ

ˇ

ˇ

��

(5.67)

This set of residual functions gives, with the correct Jacobian, quadratic convergence in the
stress update.

5.3.3 Application to DC06

In this section the parameters of the Teodosiu & Hu model are fitted to the DC06. The
Hill’48 yield criterion is used in the optimisation procedure. Monotonic, cyclic and or-
thogonal experiments were used in the MATLAB routinelsqcurvefit to determine the
material parameters. The routine constitutes a least squares optimisation method, in which
all the experiments are used simultaneously. The model is fitted to the following 9 exper-
iments: plane strain tension test in transverse direction;three cyclic tests in simple shear
with different pre-strains (Figure 4.5); an orthogonal test with unloading (Figure 4.13) and
four orthogonal experiments without unloading (tests 1-4 in Figure 4.19).

The objective function in this procedure is the difference between the measured stress–
strain curves and the simulated stress–strain curves. The MATLAB routine minimises the
squares of the differences. The experimental and simulatedcurves are divided over 325 data
points. Because of the coupling of all the equations in the model, the material parameters
need to be determined concurrently. To assure a good description of the typical strain path
dependent behaviour by the material model, some parts of thestress curves are granted
additional weight in the objective function. The stresses in the reverse stroke in the cyclic
experiments are multiplied by a factor 100; the shear stressdirectly after the strain path
change in the the orthogonal test with unloading is multiplied by a factor 150 and the shear
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Figure 5.9: The description of the cyclic experiments by theTeodosiu & Hu model.
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Figure 5.10: Evolution of state variables in cyclic test 2.

stresses directly after the strain path change in the orthogonal tests without unloading are
multiplied by a factor 75.

The results of the fitting procedure of the material parameters on the Teodosiu & Hu
model are depicted in Figure 5.9 and Figure 5.11. The cyclic experiments in Figure 5.9
show that the Teodosiu & Hu model describes the behaviour in this loading scenario well.
The Bauschinger effect, the transient hardening and the work hardening stagnation are
captured by this material model. The quality of the fit is independent of the amount of
pre-strain in the experiments. A small discrepancy is observed at the end of the second
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and third strokes. The fitting results show a lower stress than the measured stress. For this
situation, the isotropic hardening law can be extended witha term that is linear with respect
to the equivalent strain.

According to the results depicted in Figure 5.9, the approach followed in the Teodosiu
& Hu model seems to work well. The evolution of the internal variables that represent the
micro-structure is depicted in Figure 5.10. It can be seen that the polarity component in
the shear direction (Pxy) increases in the first stroke of simple shear (Figure 5.10(a)). The
value forhp starts at 1, but decreases becauseSD andP have a different evolution rate,
leading tohp < 1 in Equation (5.54). The values for̨xy , ˛s andSD increase accordingly
(Figure 5.10(b)). Directly after the reversal,Pxy decreases andhp ! 0. This causes a
stagnation in the evolution ofSD, and consequently in̨s. In turn, the back stress̨xy

does not evolve any further and hence the stress response in Figure 5.9 mimics the work
hardening stagnation. The same procedure is followed afterthe second load reversal.

Figure 5.11 shows the results in the experiment with an orthogonal loading strain path
change with elastic unloading. Overall, the model describes the experiments accurately,
except right after the strain path change. The increase in shear stress in the fitting pro-
cedure is not as steep as in the experiment and does not reach the maximum observed in
the experiment. However, the evolution of the internal state variables show that the or-
thogonal strain path change is detected by the model. Just before the strain path change
SL D 0 andSD � 125 MPa. At the strain path change, the orientations ofSD andSL

are interchanged. The directional strength decreases to 0 (Figure 5.11(b)) andSL increases
strongly (Figure 5.11(c)). The increasing value forSL leads to a sharp increase in̨s via
Equation (5.53). This results in a fast development of the back stress in the shear direction
(˛xy) and a sudden increase in the shear stress (�xy) in Figure 5.11(a). At the same time,
h˛ shows a peak which in turn hampers the evolution ofSD after the strain path change.
The evolution ofSD is slower than the decrease ofSL, and hencę s decreases. This effect
is passed on tǫxy and is reflected in the decrease in�xy in Figure 5.11(a).

After the strain path change, the Teodosiu & Hu model also predicts a peak in the tensile
stress, Figure 5.11(a). The maximum value that is reached is75 MPa. During the tensile
deformation,̨ y evolves, but it does not evolve to 0 upon elastic unloading. Hence, as the
stress state moves through the elastic region and becomes plastic at the yield surface, the
stress state will translate over the yield surface towards the simple shear point. However,
the simple shear point does not lie at the axis�y D 0 becausę y ¤ 0. As deformation
continues,̨ y vanishes and�y ! 0. Only then the simple shear point of the yield surface
is on the axis�y D 0.

The results of the continuous orthogonal strain path changeand the fit by the Teodosiu
& Hu model are presented in Figure 5.12. In this experiment the stress–strain curve is
described well. In particular, the overshoot is captured accurately. The noise observed in
the tensile stress after the strain path change is caused by the noise in the measured strain
in the experiments. Although the strain input is smoothed, the remaining noise causes
the stress state to enter the elastic region. This does not influence the state variables that
describe the hardening of the material. As in the cyclic experiments, the stress is under
predicted at higher strains. Because the stress state translates over the yield surface,̨xy

increases rapidly, but alsǫy vanishes during the translation over the yield surface. This
explains why the model does not show the peak in tensile stress after the strain path change,
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Figure 5.11: The stress prediction of the Teodosiu & Hu modelin the orthogonal test with inter-
mediate elastic unloading.

which is observed in the simulation of the test with elastic unloading.
In Figure 5.11 it is observed that the overshoot is not described accurately. The typ-

ical cross-hardening is not fully captured, but the experiments with strain path reversals
(Figure 5.9) and the orthogonal experiments with a continuous strain path (Figure 5.12)
are described well. To improve the description of the experiment with an orthogonal strain
path change with intermediate unloading, another fit procedure was performed, in which
the results of that test make a larger contribution to the objective function. The results of
this fitting procedure are depicted in Figure 5.13. Indeed, the description of the orthogonal
experiment is improved, the cross-hardening is better described, but the fit is still not “on
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Figure 5.12: The stress–strain curves for the experiment with a continuous orthogonal strain path
change and the prediction of the Teodosiu & Hu model.

top” of the experimental results. In Table 5.2 the the parameters for the current fit show a
smaller contribution of the kinematic hardening (m = 0.9 instead ofm = 0.47) to the model.
This explains why the peak in the tensile direction after thestrain path change is smaller
than observed in Figure 5.11(a). Figure 5.13(b) shows the results of this fit to the exper-
iments with cyclic loading. Here, the description of the experimental results is relatively
poor. Hence, the accuracy of the description of the experiments with orthogonal strain path
changes comes at the cost of loss of accuracy in the description of the cyclic experiments.

5.4 The Levkovitch model

In this model the different hardening phenomena are modelled with three different hard-
ening models. Kinematic and isotropic hardening are employed to describe the monotonic
and cyclic loading behaviour of material. These two models are confirmed in the literature
and are much used in material modelling. The overshoot that is observed in an orthogonal
loading scenario is modelled with distortional hardening (Levkovitch and Svendsen, 2007).
The change of the yield surface is described such that it doesnot affect the stress–strain re-
lation in monotonic and cyclic loading. Only in the latent part of the loading direction does
the shape of the yield surface change. The motivation for this approach is found in the
work of Peeterset al.(2002), in which orthogonal strain path changes are correlated with a
change in yield surface. Experiments were performed on mildsteel with strain path changes
from plane strain tension to simple shear. X-ray diffraction was used to describe the crys-
tallographic texture. Additionally, the formation of CBB’s was discussed and the influence
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Figure 5.13: Results of the Teodosiu & Hu model with a better fit of the orthogonal strain path
change.

of these on the elastic–plastic transition. This allowed the determination of the shape of
the yield surface at the end of the pre-strain phase. The resulting yield surfaces showed a
“growth” of the yield surface in the latent direction. The observed distortion is used in the
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Table 5.2: The Teodosiu & Hu material parameters for DC06.

(a) Fit with the emphasis on the be-
haviour during cyclic loading.

parameter value

�0 (MPa) 125:0

˛0 (MPa) 0:5

Ss (MPa) 238:8

Rs (-) 65:0

Cp (-) 1:2

Cl (-) 50:0

Cd (-) 5:42

C˛ (-) 164:7

Cr (-) 44:4

np (-) 350:0

nl (-) 0:85

m (-) 0:47

r (-) 2:85

(b) Fit with the emphasis on the
behaviour in orthogonal strain path
changes.

parameter value

�0 (MPa) 90:0

˛0 (MPa) 0:93

Ss (MPa) 294:2

Rs (-) 62:5

Cp (-) 5:06

Cl (-) 38:13

Cd (-) 6:80

C˛ (-) 250:0

Cr (-) 145:7

np (-) 66:36

nl (-) 0:77

m (-) 0:90

r (-) 14:305

Levkovitch model to describe the cross-hardening effect. The segmented construction of
this material model allows the use of different isotropic and kinematic hardening models
for the description of the behaviour under cyclic and monotonic loading. In this work, the
Swift law is employed for the isotropic hardening and the Armstrong–Frederick law is used
for the kinematic model.

In the original work, the Hill’48 yield criterion was adapted for the distortional harden-
ing:

� D
p

� W .M C H/ W � � �f (5.68)

The tensorM describes the initial material parameters of the Hill‘48 criterion. H is a
fourth order tensor, analogous toM, describing the distortion of the yield surface. IfH D
0 the initial yield surface is described. A similar procedureas in Section 5.1.2 can be
used to replace the Hill‘48 yield criterion with an alternative description. This is done by
substituting the first term in the root with the square of an alternative material model:

� D
q

�

�eq.�/
�2 C � W H W � � �f (5.69)

The Teodosiu & Hu model and the Levkovitch model use a similarequation for the
dislocation structure and distortion, respectively. The Levkovitch model also applies a
division between the directional and the latent distortion, depending on the current loading
directionN:

HD D N W H W N (5.70)

HL D H � HDN ˝ N (5.71)



5.4 The Levkovitch model 91

The evolution of the distortion is described in terms of a direction and a latent part:

PH D Cd
�

H s
d � HD

�

N ˝ N P� C Cl
�

H s
l .I � N ˝ N/ � HL

� P� (5.72)

The first term on the right hand side of this equation describes the directional distortion
and the second term the latent distortion. The directional distortion is determined with the
parametersCd andH s

d that describe the evolution rate and the saturation value, respectively.
Cl andH s

l control the evolution of the latent distortion.I describes the fourth order unit
tensor.

To adapt the mechanical behaviour under non-proportional loadingonly, the parame-
ter H s

d D 0. During monotonic loading the latent distortion will evolve to H s
l and the

directional distortion will remain 0. Hence, in monotonic or cyclic loading, the isotropic
and kinematic hardening laws dictate the stress–strain relation. Only when another strain
path is applied will the distortion affect the mechanical behaviour. This is the result of the
change inN, that changes the division of the distortion in the latent and the directional
parts. Hence, in an orthogonal strain path change the previously latent distortion becomes
directional and the stress state translates to a “distorted” part of the yield surface. Depend-
ing on the distortion, the flow stress is changed to describe the cross-hardening effect. After
the strain path change,N is again constant, andHD ! 0. This results in a lower flow stress
and as such mimics the softening after the overshoot.

The overshoot observed in the orthogonal test is described with an increase in the elastic
domain with the Levkovitch model. This is in contrast with the Teodosiu & Hu model that
predicts a low flow stress and a high hardening rate in an orthogonal strain path change.

5.4.1 Implementation

In this work, a combination of isotropic, kinematic and distortional models is used. In par-
ticular, the framework as presented in Section 5.2 is desirable. To this end, Equation (5.72)
needs to be rewritten in a residual format. This equation reads upon discretisation as fol-
lows:

RH D �H � Cd
�

H s
d � HD

�

N ˝ N�� � Cl
�

H s
l .I � N ˝ N/ � HL

�

�� (5.73)

This evolution results in a system of 81 equations if no use ismade of symmetry. To speed
up the calculation, the tensor is rewritten in the format of theM tensor in the Hill’48 yield
criterion. Hence, the shear contributions are determined by one component inH and the
yield surface distortion is independent of the hydrostaticstress. ThenH reads, in matrix
format:

ŒH� D

2

6

6

6

6

6

6

4

T2 C T3 �T3 �T2 0 0 0

�T3 T1 C T3 �T1 0 0 0

�T2 �T1 T1 C T2 0 0 0

0 0 0 T4 0 0

0 0 0 0 T5 0

0 0 0 0 0 T6

3

7

7

7

7

7

7

5

(5.74)

This symmetric matrix is fully determined by the parametersT1:::T6. The set of residual
functions for a combined isotropic/kinematic hardening model with distortional hardening
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is presented here:

R� D �" � E
�1�� � �� @�

@�

R˛ D C˛˛sN�� � C˛˛n�� � .1 C ��C˛/ �˛

RH D �H � Cd
�

H s
d � HD

�

N ˝ N���
Cl
�

H s
l .I � N ˝ N/ � H L

�

��

R� D
q

�2
eq � �H� � �f

(5.75)

Since only the components ofT need to be determined, only the components on the diag-
onal ofRH need to be used in the return mapping algorithm. The full matrix can then be
constructed from the values ofT.

The state variables that are determined with this update are:

˚

V
	

D

8

ˆ

ˆ

<

ˆ

ˆ

:

��

�˛

�T

��

9

>

>

=

>

>

;

(5.76)

5.4.2 Application to DC06

In this section the application of the Levkovitch model to DC06 is discussed. The mate-
rial model is fitted to the experiments with monotonic, cyclic and orthogonal strain paths.
The distortional model is developed such that it does not influence the stress–strain rela-
tion in a monotonic or cyclic strain path. Hence, firstly the material parameters for the
isotropic/kinematic hardening are determined. With theseparameters fixed, the parameters
of the distortional hardening are fitted to the orthogonal experiments. It is noticed that
with the current description of the kinematic hardening, itis not possible to describe all the
phenomena that occur in a cyclic strain path change. For thiskinematic hardening model,
a good description of the stress level at the end of the third stroke in the experiment with
cyclic loading can be achieved. This is at the expense of a relatively poor fit of the initial
part of the stress–strain curve. A good fit to the initial partof the stress–strain curve can
be also be obtained, but then the results for higher strain levels are poor. For both fits, the
distortional model has to be adapted for an accurate description of the hardening in the
experiment with an orthogonal strain path change. The fitting procedure is performed with
the internal least squares optimisation from MATLAB : lsqcurvefit.

To have a proper fit of the initial part of the hardening curve,the contribution of the
monotonic experiments to the objective function is increased. The result of this optimi-
sation is depicted in Figure 5.14. Indeed, the initial part of the hardening curve is repre-
sented well, but the remainder of the stress–strain curve isnot as well represented. The
Bauschinger effect is predicted well, but transient hardening is not described by this set of
parameters. The stress–strain curve deviates approximately by 75 MPa directly after the
strain path change, but at the end of the second stroke, the experiment and the fit do co-
incide acceptably. The difference after the second reversal is not as poor as after the first
reversal, but the hardening rate is too high, resulting in a too high stress level at the end of
the third stroke.
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Figure 5.14: The experimental cyclic results (solid lines)with the fit of the Levkovitch model
(dashed lines).

Table 5.3: Levkovitch material parameters for DC06.

(a) Fit with the emphasis on the initial
part of the hardening curve.

parameter value

�0 (MPa) 70:0

C (MPa) 349:0

"0 (-) 5:0 � 10�5

n (-) 0:2969

C˛ (-) 15:0

˛s (-) 40:0

Cd (-) 15:0

H s
d (-) 0:0

Cl (-) 11:0

H s
l (-) 0:65

(b) Fit with the emphasis on the cyclic
loading.

parameter value

�0 (MPa) 0:0

C (MPa) 413:7

"0 (-) 3:42 � 10�5

n (-) 0:1961

C˛ (-) 53:12

˛s (-) 15:00

Cd (-) 5:39

H s
d (-) 0:0

Cl (-) 3:95

H s
l (-) 0:77

With the fit for the isotropic and kinematic hardening models, the parameters for the
distortional hardening model are determined. The materialparameters are denoted in Ta-
ble 5.3(a). The results for the experiments with and withoutintermediate elastic unloading
are depicted in Figure 5.15. The results of this set of material parameters shows a good
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(a) The stress–strain curve for the experiment with elasticunloading.
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(b) The stress–strain curve for the experiment without elastic unloading.

Figure 5.15: The Levkovitch model in the experiments with anorthogonal strain path change.

description of the orthogonal experiments. The peak in the shear stress after the strain path
is captured for both the strain path with and without intermediate elastic unloading. Also
the work softening that is measured in the experiment is captured by the model. After that
the regular hardening curve is followed accurately.
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(a) The description by the Levkovitch model (dashed lines) of the experiments (solid lines)
with cyclic loading.
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(b) The orthogonal experiment with elastic unloading.

Figure 5.16: The result of the parameter fit of the Levkovitchmodel with increased weight in the
objective function for the Bauschinger effect.

The performed fit provides a good agreement for the initial hardening and the mechani-
cal behaviour in an orthogonal strain path change. The fit of the cyclic experiment however
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is poor. For that reason an extra fitting procedure was performed to improve the description
in cyclic loading. The results of this fit for the experiment with cyclic loading and with
an orthogonal strain path change are depicted in Figure 5.16. The material parameters are
denoted in Table 5.3. Indeed, Figure 5.16(a) shows an improved prediction of the cyclic
behaviour. Especially, the stresses after the load reversals are in better agreement with the
experiments. At the end of the third stroke, the measured stress coincides with the predic-
tion of the model. In the first stroke however, the hardening rate is initially too high, and
subsequently too low. At the end of the first stroke in test 3, the difference in stress level
is approximately 30 MPa. Figure 5.16(b) shows the fit of the distortional hardening model
to the experiment with an orthogonal strain path change withintermediate elastic unload-
ing. The characteristic peak after the strain path change cannot be captured with this set of
parameters for the isotropic/kinematic hardening. This isdue to the high evolution rate of
the kinematic hardening. As the strain path changes, the increase of kinematic hardening
is larger than the decrease in stress due to the distortionalhardening. More distortion indi-
cates a higher initial yield stress and a better initial description of the peak, but due to the
rapid kinematic evolution, the stress would increase even further, hereby creating a large
discrepancy between the model and the experiment. The result observed represents a bal-
ance between a good description of the stress peak and a good description of the softening
after the peak.

To describe the monotonic hardening, cyclic behaviour and cross-hardening, the Lev-
kovitch model needs to be adapted. With the current combination of isotropic, kinematic
and distortional hardening models, only the cross-hardening or only the cyclic behaviour is
described accurately.

5.5 Strain path change indicator

The material models presented in this chapter show different methods to describe the me-
chanical behaviour of sheet material. The increased accuracy that is acquired via the strain
path sensitive models is obtained at the expense of two difficulties. Firstly the material
models are more extensive compared to the regular material models. The Teodosiu & Hu
model for example, requires 10 times more processing time ina simulation of cup deep
drawing. Although a good convergence within the Teodosiu & Hu model is observed, the
number of calculations remains higher compared to conventional models. Furthermore,
more material parameters are required to fit the models. Theycannot be determined from
simple monotonic and cyclic tests; orthogonal experimentsare required to allow for the
complete determination of the material behaviour. It is therefore not a definite choice
to use a strain path sensitive material model in simulations. In this section a strain path
change indicator is developed that keeps track of the strainpath. It indicates whether a
strain path sensitive model is essential for a good prediction of the process, or whether a
regular material model is sufficient. This makes simulations more efficient, because now
the time-consuming material models are only used when necessary.

To trace the strain path in a simulation, some requirements need to be met. The indicator
must be easy to evaluate during a simulation, otherwise it would make more sense to use
a full strain path dependent material model. Furthermore, it is desirable that the indicator
is a state variable that is updated during the simulation. The indicator is implemented at
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the material model level, which means that strains are used to calculate the strain path
sensitivity.

Schmittet al. (1985) proposed a strain path change indicator based on two sequential
strain paths. The cosine function is used to indicate the angle between the two strain paths:

ˇ D "1 W "2

jj"1jj jj"2jj (5.77)

For monotonic loadinǧ D 1, for reverse loadinǧ D �1 and for an orthogonal strain
path changě D 0. This indicator works well for the traditional experimentsin which a
strain path change is applied by cutting a smaller sample from a larger sample. To describe
the strain path changes in a full simulation, the strain increments are used to determine the
strain path change:

ˇ D �"1 W �"2

jj�"1jj jj�"2jj (5.78)

This formulation makes the indicator step size dependent. In particular in the stage of the
simulation where a strain path change occurs, smaller load steps are required to keep the
simulation converging. And with a smaller step size,ˇ ! 1, because the difference in
orientation between two sequential strain increments becomes negligible.

Here, a strain path change indicator is proposed based on thedefinition of Equation (5.78).
Instead of comparing two sequential strain increments; thestrain history is compared with
the current strain increment. The evolution of the history of the strain pathG is described
by:

PG D P" � c P"p
eqG (5.79)

The parameterc determines how much the history of" contributes to the evolution ofG.
The strain path change indicator then reads:

� D G W P"
jjGjj jj P"jj (5.80)

Figure 5.17 shows the results of a strain path that describesreverse loading and orthog-
onal loading. The indicator clearly captures the reverse (� D �1) and orthogonal (� D 0)
loading. After continued deformation in the new direction,a difference is observed in how
the indicator returns to� D 1. The reverse loading shows a sudden jump back to� D 1.
This is due to the evolution of the strain history. With everystep, the current strain in-
crement is added, with a certain weight, to the strain history. Although this decreases the
values of the strain history, the direction of the strain is still oriented with respect to the first
strain path. It requires only 1 increment to change the direction from the first to the second
direction, which leads to an abrupt change in the sign of the strain path indicator. In the
orthogonal strain path change, thedirectionof the strain path history is changed gradually
to the current strain path. This shows in the response of the indicator: it gradually returns
to � D 1. The value ofc defines the rate at which the indicator returns back to� D 1.
Hence, a sharp strain path will always be noticed; a gradual strain path change can only be
detected if the history of the strain path is so large that it still describes the first strain path.

The influence of the step size is depicted in Figure 5.18. Simulations with a large step
size (�"eq D 2 � 10�2) and with a small step size (�"eq D 2 � 10�4) were performed.
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Figure 5.17: The influence ofc on the strain path change indicator. The strain increment inthese
tests are�"eq D 2 � 10�4.
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Figure 5.18: The influence of different step sizes on� with c D 5. Dashed lines:�"eq D 2�10�4

and solid lines:�"eq D 2 � 10�2

The figure shows that the strain path change indicator valuesfor the experiment with the
large increments correspond with the indicator values calculated for the simulation with
the small increments. The curve themselves are different, due to the large intervals in the
simulation with the large increments.

Figure 5.19 shows the strain path change indicator (withc D 10) for the experiments
on DC06 with orthogonal strain path changes (Section 4.5). The indicator shows the same
trend for all the experiments, but the minima of the functions differ depending on the sharp-
ness of the strain path. The sharpest strain path change (test 6) has a minimum of� D 0:31,
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Figure 5.19: The strain path change indicator applied to theexperiments on DC06 with orthogo-
nal strain path changes,c D 10.

whereas test 1 with a very gradual strain path change shows a value of� D 0:55. The or-
thogonal test with elastic unloading is characterised by a value of� D 0, which represents
a true orthogonal strain path change. From this it is concluded that a distinct difference in
the indicator appears when orthogonal strain paths are applied with different “sharpnesses”
in the transition. The indicator makes clear distinctions and hence can be applied in full
simulations. If the values remain in the region of� D 1, it can be assumed that a material
model with isotropic hardening is accurate enough for the simulation investigated. When
�1 < � < 0:4, the material will undergo an orthogonal or reverse strain path change. In
these situations the material may show strain path sensitive behaviour, and an advanced
material model should be used. For strain path changes where� � �1, only kinematic
hardening is required.

The strain path change indicator presented here can quantify a strain path change. In the
above, DC06 was used to define the boundaries for the strain path change indicator, which is
based on an experimental study. However, if the mechanical behaviour is unknown,i.e. the
response to cyclic and orthogonal loading has not been determined, the strain path change
indicator can still be employed. It indicates whether a strain path change occurs, and hence
whether experiments with cyclic or orthogonal strain path changes should be performed.
In other cases this parameter will confirm that the material model used is accurate enough
in terms of strain path dependency.



100 Material models for non-proportional loading

5.6 Discussion

In this chapter different models are presented that can, to some extent, predict the strain
path sensitive behaviour. The most elaborate model, the Teodosiu & Hu model, gives the
best description in cyclic strain path changes. In particular, the transient hardening and
the consequent work hardening stagnation can be described accurately, independent of the
amount of pre-strain. In the same fit, the orthogonal experiments with a continuous strain
path are also well described. An orthogonal strain path change with intermediate elastic un-
loading, however, cannot be described exactly with this model. In the experiment, it seems
that the shear stress increases elastically to the peak. TheTeodosiu & Hu model predicts
a high hardening rate after the strain path change which is not sufficiently high to capture
the cross-hardening effect. By allowing a less accurate fit of the cyclic experiments, the fit
with an orthogonal strain path change is improved. In the Levkovitch model, either a good
fit of the orthogonal strain path change or of the cyclic experiment is obtained, similar to
the fitting procedure of the Teodosiu & Hu model. The Levkovitch model describes the
experiments with the orthogonal strain path change better than the Teodosiu & Hu model.
In the Levkovitch model, distortional hardening increasesthe elastic domain in the latent
direction. Upon an orthogonal strain path change, the stress in the new direction reaches a
higher flow stress, hereby describing the cross-hardening effect. This gives an accurate de-
scription of the experimental results. The fit with a good description of the experiment with
an orthogonal strain path change gives a poor description ofthe mechanical behaviour of
the experiments with load reversals. A better estimate of the cyclic behaviour was obtained,
but the description of the cross-hardening effect was less satisfactory. The cyclic behaviour
of the Levkovitch model is dependent on the chosen kinematichardening law, but it is
clear that the Armstrong–Frederick relation is by far not asaccurate as the Teodosiu & Hu
model. Additionally, the kinematic hardening model in the Levkovitch model reduces the
performance in the orthogonal strain path changes. A bettermodel for cyclic hardening
within the Levkovitch model is recommended. Both the classical isotropic and combined
isotropic/kinematic models cannot describe the overshootobserved in the orthogonal strain
path change. The combined model gives a better prediction inthe cyclic tests than the
isotropic model, but this is still not as accurate as the Teodosiu & Hu prediction.

For use in large scale deep drawing simulations, the models clearly show that accuracy
comes at the expense of more computation time. The Teodosiu &Hu model is extensive,
with a large system of equations that need to be solved. The Levkovitch model is more
economic, but its predictions are not as good. Isotropic andkinematic models require little
computation time, and besides, they require a small set of parameters that can be deter-
mined easily. The Teodosiu & Hu model and the Levkovitch models require, as well as
the monotonic experiments, tests with orthogonal strain paths to fit their parameters. Ad-
ditionally, the parameter fit becomes more laborious. The engineer has to choose which
material model is suitable for the process simulated. This choice can be checked after the
simulation with the presented strain path change indicator. Still, for effective use of the
indicator some knowledge about the mechanical behaviour isrequired. Hence, the mono-
tonic experiments have to be extended with cyclic and orthogonal experiments. However,
the mechanical behaviour is then restricted to the observations on the presence of strain
path change effects.
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In the following chapter, the material models discussed here are evaluated in full deep
drawing simulations. The outcome of the simulations are compared with actual measure-
ments on the process. This will give an indication of the added value of the strain path
dependent material models.





6. Validation

This chapter discusses the validation of the presented material models by comparing model
predictions with biaxial experiments and a deep drawing experiment. Biaxial experiments
with continuous tensile deformation and cyclic shear, see Section 4.4, provide strain path
dependent experiments that can be used to validate the material models. In the initial
monotonic part of the experiments, the yield criterion determines, via the direction of plas-
tic flow, the ratio between tensile and shear stresses. The Hill’48 and Vegter yield criterion
are assessed via these deformation modes. The complete experiment, including load re-
versal in shear, under tensile deformation, requires an accurate prediction by the hardening
laws. The Teodosiu & Hu model, the Levkovitch model with isotropic/kinematic hardening
and the classical isotropic/kinematic hardening model arevalidated using experiments on
DC06, AA5182 and H340LAD.

To demonstrate the applicability of the material models in areal product, the so-called
“cross-die” product is used. This semi-academical deep drawing product is used to inves-
tigate different aspects of deep drawing. In this research,it is used to show the application
of the strain path change indicator and the different predictions of the material models.

6.1 Biaxial experiments

The combined tension–simple shear experiments were presented in Section 4.4. A constant
plane strain deformation is applied and meanwhile cyclic simple shear is imposed on the
sample. The applied strain path change varies depending on the amount of plane strain
deformation. The tensile deformation is a continuous process, but the shear deformation is
reversed. In practice the strain path change cannot be applied strictly, because of limited
stiffness in the test equipment. In the absence of simple shear, the tensile deformation
constantly increases. This smoothes the strain path changeto some extent. Figure 6.1
presents the stress development during an experiment, according to an isotropic hardening
model. Figure 6.1(a) shows the evolution of the stresses measured in an actual experiment
on H340LAD (test 1 in Figure 4.11(c)). The stress path in sucha test is explained in
Figure 6.1(b) with a prediction of the stress evolution by anisotropic hardening model.
Starting at zero stress, the stress increases elastically in both shear and tension tot1. At
the initial yield surface (�0), the stress state enters the plastic regime and work hardening
appears. The plastic regime also induces astresspath change, due to the different stress
ratios for elastic and plastic deformation. As the stress state reachest2, the simple shear
deformation is reversed. Meanwhile, the tensile deformation continues. The stress state
“crosses” the elastic regime, while the tensile stress still increases. This requires only a
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Figure 6.1: The experiment with cyclic shear under tension on H340LAD explained with an
isotropic hardening model.t1::5 denote the characteristic points in the stress–strain
curve.

small strain and it is represented in the stress–strain curve by a sharp increase and decrease
in tensile and shear stress, respectively. At the opposite side of the yield surface�1, at t3,
the direction of plastic flow dictates the stress state. Thiscauses a shift across the yield
surface towardst4. In the model, this would only require a small amount of strain, but
in practice, the used strain is relatively large. As monotonic hardening is resumed, with a
constant direction plastic flow, the stress should increaseagain. Indeed, the measured shear
stress shows this trend, but the tensile stress remains moreor less constant. Eventually, the
stress state reaches�2 at t5.

The predictive performance of the material model during theload change is dominated
by the hardening model. The calculated stresses for the Teodosiu & Hu model, the Lev-
kovitch model and the classical isotropic/kinematic hardening model are compared with the
stresses for this experiment in Section 6.1.1. The materialparameters used can be found
in Appendix A. The strains that are measured in the experiments are used as input for
simulations of a single element test in DIEKA. The experimental noise on the strain data
was removed by smoothing. Especially when the stress is in the elastic regime, the stress
calculation magnifies the effect of noise. This is also considered in the next sections.

The Hill’48 and the Vegter yield criterion are assessed withthe first stroke of the ex-
periments (t0 - t2) in Section 6.1.2. In the model, the ratio between the tensile and shear
stresses depends on the position of the stress state on the yield surface, which in turn is
determined by the direction of plastic flow. Hence, a yield surface that describes the mate-
rial accurately, predicts the correct ratio between the tensile and shear stresses. It is noted
that in the fitting procedure of the material models, both theplane strain tension test and
the simple shear experiment are used. Good results were obtained, and hence, the ratio
between the stress is only dependent on the yield surface used.
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6.1.1 Hardening laws

In this section the performance of the Levkovitch, the Teodosiu & Hu, and the combined
isotropic/kinematic material models are assessed by meansof simulations of the experi-
ments with tension–cyclic shear. In all material models, the Vegter yield criterion is used.

DC06 In Figure 6.2 the results of the simulations with DC06 are presented. The experi-
ment is presented in Figure 4.9, test 1. The initial shear deformation is well described by
all material models, see Figure 6.2(b). The Teodosiu & Hu model has the best performance
here. After the load reversal, the Teodosiu & Hu model predicts an initial yielding that is
close to the experimental results, but after the transient effect a work hardening stagnation is
predicted. This is not observed in the experiments. Both theLevkovitch and the combined
isotropic/kinematic models show earlier yielding, with the combined isotropic/kinematic
model being almost on top of the experimental results. The tensile stress curve is best
represented by the Teodosiu & Hu model. It follows the initial stress curves and shows a
decreasing stress after the strain path change. Although the stress level is not completely
matching the experiments, the model gives similar results.Both the Levkovitch and the
combined isotropic/kinematic hardening model cannot predict the phenomena in the ten-
sile direction. The tensile stress after the load reversal is too high for both models. They
do not detect the strain path change, and predict an increasing trend in the tensile stress.
Additionally, the distortional model gives a stronger deviation in the initial tensile curve.

Figure 6.2(c) shows the results of the simulations in stressspace. Again, the pre-
straining of the material is similarly described by all models. After the load reversal, the
stress state moves through the elastic region and enters theplastic regime again. The slope
of the stress paths through the elastic region from the simulations deviate from the slope
measured in the experiment. This is due to the small strain increments that cannot be mea-
sured accurately during the actual measurement. And because all the material models use
the same model to describe elastic behaviour, the slopes of the simulations correspond.
The combined isotropic/kinematic model keeps track of the stress curve until the strain
path change. After that it starts deviating from the experiments. The Levkovitch model
overpredicts the tensile stress before the strain path change and is far from the experimen-
tal values. As the stress state reaches the plastic regime again, the models predict a different
behaviour. The combined isotropic/kinematic model describes a sharp transition from the
elastic to the plastic regime, which is indicated by the sudden change of the stress path.
The Teodosiu & Hu model also predicts a kink in the stress pathas the stress state becomes
plastic again. Right after that the material deviates from the yield surface shape and shows
a path that gradually turns to shear. After that the stress path loops back, hereby translating
to the origin of the axes. It seems that the work softening, that is normally observed after
an orthogonal strain path change is causing softening in both stress components. Although
the stress–strain curves described by Teodosiu & Hu in Figure 6.2(a) and 6.2(b) show a
good correspondence, the results in stress space are less accurate. The Levkovitch model
describes the trends of the experiment in Figure 6.2(c) well, but in absolute values this
model is far from the experimental results. Clearly, if the stress curve described by the
Levkovitch model would be shifted 80 MPa to the left, the results of this material model
would be good.
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(c) The curves in stress space.

Figure 6.2: Simulation results of the biaxial experiment onDC06 with the Vegter yield criterion.
The legend in figure (c) holds also for figures (a) and (b).

AA5182 In the experiments performed on AA5182 in Chapter 4, it was observed that the
mechanical behaviour of AA5182 is not strongly dependent onstrain path changes. Also
the experiments with intermediate elastic unloading in theorthogonal strain path change
show that the stress in the new loading direction gradually converges to a saturation rate.
Here, test 2 from Figure 4.10 is simulated. The shear curves in Figure 6.3(b) show a similar
trend. None of the material models can capture the transienthardening in shear after the
strain path change. Eventually, the models catch up with theshear curve. In the tensile di-
rection, the models predict peaks in the curves that are higher than the experimental values.
After that, a decrease in tensile stress is predicted with the strain path dependent material
models showing the largest decrease. It is noticed that the classical isotropic/kinematic
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Figure 6.3: Simulation results of the biaxial experiment onAA5182. The legend in figure (c)
holds also for figures (a) and (b).

hardening model describes the stress level exceptionally well. The decreasing trend in the
tensile curve after that is not captured by the models.

Figure 6.3(c) shows the results in stress space. In contrastwith the predictions for
DC06, the material models all predict approximately similar behaviour. In the experiment,
after the strain path change, the stress state seems to migrate through the elastic regime,
which can be concluded from the constant slope that is described. Then, the stress state
deviates from this slope and slowly turns to shear. It seems,that in this experiment, the
material is migrating closely along the yield surface. In the simulations, the stress state
does not migrate through the elastic regime, but translatesover it, hereby describing a fluent
arc from tension–positive shear to tension–negative shear. Probably, the strain increments
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that are used for the deformation path show a deviation and cause the stress path in the
simulations to follow the yield surface instead of crossingthe elastic regime. The combined
isotropic/kinematic hardening model describes a kink in the stress path at the moment that
monotonic hardening is resumed. The strain path dependent material models by Levkovitch
and Teodosiu & Hu describe similar behaviour to the combinedisotropic/kinematic model
at the moment monotonic hardening is resumed. Only here, thetransition to the monotonic
hardening is described slightly more smoothly with the strain path dependent models. It is
expected that stress curves from the strain path dependent models will not deviate strongly
from the curve described by the combined isotropic/kinematic hardening model, because
the models were fitted to experiments that show limited strain path sensitivity.

H340LAD In Figure 6.4(b) it is observed that the combined isotropic/kinematic model
performs badly in the initial shear curve. As the shear component is activated, its stress
level remains at a constant level. After the load reversal, asmall dip is observed after
which the shear curve again remains almost perfectly constant. The tensile curve also re-
mains at a level that is far below the measured stress curve. This model with the current set
of parameters cannot represent the material accurately. The Levkovitch hardening model
gives a better prediction of the experiment. The tensile curve is accurately described, and
even the initiation of the monotonic loading in the new direction is captured. The shear
curve shows a small overshoot after the load reversal, but the general trend is captured with
the Levkovitch model. It is noticed that in the shear stress–strain curve all the models show
a small overshoot after the load reversal. This indicates that the deformation description
is not accurate enough. The Teodosiu & Hu model is also capable of capturing the char-
acteristics of this experiment. The shear curve is capturedrelatively well, but the tensile
component only captures the trend of the stress development. Figure 6.4(c) shows the re-
sults in stress space. The experiment shows that the stress,measured in the experiment,
translates through the elastic domain, which is indicated by the linear slope after the strain
path change. The simulations however, show that the stress state migrates across the yield
surface. The combined isotropic/kinematic model and the Levkovitch model have a similar
trend when translating over the yield surface. The Levkovitch model however, shows a
larger shape of the yield surface, which is attributed to thedominant contribution of the
isotropic hardening model in the Levkovitch model. The simulation with the Teodosiu &
Hu model describes a part of the load reversal where the stress state is in the elastic regime.
As the monotonic hardening is again resumed, all the models describe a confused stress
path. This is attributed to the noise on the deformation input, because all models describe
this behaviour.

6.1.2 Yield criteria

The initial monotonic deformation of the experiment is a combination of tensile and shear
deformation. The first derivative of the yield criterion determines the direction of the plastic
flow. This fixes the stress state in the model. The prediction of the ratio between shear
and tensile stress indicates the accuracy of the yield criterion. For all the simulation, the
classical isotropic/kinematic hardening models were used.

Figure 6.5 shows the results of the simulations of the three experiments. In all the
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Figure 6.4: Simulation results of the biaxial experiment onH340LAD with the Vegter yield cri-
terion. The legend in figure (c) holds also for figures (a) and (b).

simulations it is observed that the stress–strain curves are not smooth functions. This is
due to the use of the strain measurement in the experiment. Due to smoothing of the
strain input, the “sharp” edges of the strain signal are eliminated, but the effect of noise
is smeared out over the entire strain path. This leads to a slightly wavy strain path, which
is reflected in the stresses that show changing trends. In general, none of the simulations
correspond exactly with the experiments. The flow curves predicted for AA5182 are not far
off, but still the flow stresses are 15–20MPa too high in the shear curves. The tensile curves
correspond well; the Vegter curve in particular seems to capture the behaviour well. The
simulation with DC06 shows a good prediction for the shear curve, but the tensile curve
was not captured by any of the models. H340LAD was not captured accurately for either
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Figure 6.5: The initial part of the hardening curves for the validation experiment. The solid lines
represent tensile stresses and the dashed line represent the shear stresses.
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stress components. This material also shows a delayed hardening after it has reached the
yield limit. Both yield criteria underestimate the tensileand shear stresses. For the tensile
direction, the Hill’48 and Vegter criteria predict the tensile stress at the same level, but the
values are almost 50 MPa of from the experimental curve. For the shear curve the same
holds, except that the Vegter description shows a larger mismatch with the experiments.

Both the Hill’48 and Vegter criteria cannot accurately capture the stress ratio in tension
and shear in the experiments. The Vegter criterion however is an advanced criterion, that
uses four experiments to fit the model. It would be reasonableto expect that the Vegter
yield criterion would be able to describe the experiments tosome extent. For none of
the materials is this achieved. Furthermore, the results ofthe simulations with the two
yield criteria describe stress paths that coincide to some extent. The simulations on the
experiment with H340LAD shows a 25 MPa difference in the estimated shear stresses.
The maximum difference between the stress prediction and the measured stress is, in the
case of H340LAD, approximately 40 MPa. Hence, the difference between the predictions
of the simulations and the actual measurement is larger thanthe difference between the
individual predictions of the simulations. This leads to the conclusion that using the strain
measurement in a simulation to compare the performance of yield criteria is not a good
validation tool. If the measurement of strain could be performed more accurately, this
validation procedure could be used for validation of yield criteria.

6.1.3 Discussion

In this section simulations were performed with the deformation measured in a true biaxial
experiment applied on a single element. It is observed in allthe simulations, independent of
the material model, or the material used in the experiment, that the results of the simulations
show a non-smooth stress path. This is attributed to the measured strain that is used as an
input for the simulations. Smoothing of the strains was usedto optimise the simulation
results, but the result is not satisfactory. The results of the simulations can be improved,
if the strain measurement in the experiments is improved. InChapter 3 it was found that
the accuracy of the strain measurement of the TWENTE BIAXIAL TESTER is approximately
5 �10�4. This value allows for measurements in the elastic region, but is clearly not accurate
enough to use as input for FE-simulations. Hence, the conclusions that are drawn from the
simulations have to be considered carefully.

When considering the yield criteria, the Hill’48 and the Vegter models perform equally
well. It was observed that these models predict stress–strain curves that almost correspond,
but the experiment is not always well represented. This can imply that the used method is
not accurate, but can also indicate that the used concept of ayield criterion is not necessarily
adequate for this particular deformation.

The materials used to validate the material models vary in their strain path dependency.
The mechanical behaviour of DC06 strongly depends on the strain path, whereas AA5182
shows limited sensitivity. The latter is described well by all the material models, because
the simulations differ only in the description of the strainpath effects. The mechanical
behaviour of the DC06 is only captured with the Teodosiu & Hu model with moderate
accuracy. It captures the phenomenon, but cannot describe the stresses quantitatively. The
distortional model describes the H340LAD better than the two other models. It captures
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the trends in the stress development. The isotropic/kinematic material model does suffice
in the case of AA5182, but materials that are more sensitive to strain path changes, cannot
be accurately described with this model. Also a qualitativedescription fails.

6.2 Cross die

To asses the material models presented in Chapter 5, simulations were performed on a true
deep drawing process. The selected product is the “cross die”, a product made with a cross
shaped die. The final product is depicted in Figure 6.6. This product was initially developed

r 2

r 1

Figure 6.6: The cross die product.

as a tool to judge the formability of sheet metal (Atzemaet al., 2004). It represents true
forming processes better then square or circular cups, because different deformation modes
are activated in the deep drawing of the product. The aim is todraw a product to a height
of 60 mm with the largest possible blank dimension, without any signs of necking. The
used blank must be square and the maximum blank size is denoted with the Cross Die
value. DC06 is used here for the assessment of the material models, because it shows
the strongest strain path sensitive behaviour. The experiments performed in Chapter 4 are
performed with the same batch of material as used for the cross die. The deep drawing
experiments were performed at Corus PAC.

The blank holder force (BHF) used for the cross die experiments was determined with
a fixed ratio:

BHF D 3=4Rmt (6.1)

WhereRm indicates the maximum stress andt the thickness of the blank. The maximum
stress is indicated withRm and the thickness witht . Hence, the blankholder force in-
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creases with increasing thickness and higher strength. According to Equation (6.1), with
t D 0:7 mm thick, andRm D 300 MPa the target blankholder force was determined to
157.5kN. Experiments were performed and showed that a blankwith sides of 295 mm rup-
tures completely. The experiment with sides of 290 mm still showed some mild necking,
and was hence rejected. A blank with sides of 285 mm, the full drawing depth (60 mm)
was reached without necking. This blank size was used in the simulation of the process.

A hydraulic support was used to apply the blankholder force.While developing the
test equipment it was found that the tools deformed elastically during the deep drawing.
To this end, 8 force sensors were used in a square setup to measure the blankholder force
during the forming. Ideally, the 8 force sensors would carryan even load, but mostly a
non-homogeneous distribution of force was measured. The blankholder force in the ex-
periment was found to be 17.4–22.2kN per load cell and the total blankholder force was
156 kN. For experiments where the spread in the 8 force signals is larger, the symmetry
of the deformation could be deteriorated. This would require a complete simulation of the
cross die, rather than only a quarter simulation. Additionally, the different segments of the
blankholder require individual force control, depending on the measurement. Here, it is
assumed that the forces are sufficiently balanced.

Firstly, the process was studied by means of a simulation with an isotropic hardening
model. The characteristics of the process and the calculation are discussed. After that,
simulations are presented with the Teodosiu & Hu model, the Levkovitch model and the
combined isotropic/kinematic hardening model. Conclusions are drawn based on their
performance.

6.2.1 The deep drawing process of the cross die

This section discusses the characteristics of the deep drawing process of the cross die. The
deep drawing process of this product is analysed by means of aFE simulation. In this
simulation, only a quarter of the product is used, due to symmetry of the product and the
material. The blank is meshed with 3072 linear discrete shear triangular elements (Batoz
and Lardeur, 1989) that have an average length of 4 mm. Five integration points across the
thickness were used. The isotropic Swift law was used, combined with the Vegter yield
function. The parameters for this material model can be found in Appendix A.

The influence of friction in deep drawing processes is not always determined. From
measurements it is known that the friction coefficient� � 0:13. However, due to the
lubrication this value is not fixed, and does not necessarilygive an accurate result in the
simulations. According to the manufacturers of the lubricant, the friction coefficient is
0.13 for normally lubricated sheet. In the presented experiment, less lubrication is applied
to enhance the reproducibility. To obtain some feeling for the dependence on friction, sim-
ulations were performed with different friction coefficients (� D 0:12, 0:13, 0:14, 0:15,
0:16) to fit the force–displacement curve. The results are depicted in Figure 6.7. From
these results it is concluded that the Vegter model combinedwith the Swift hardening law
is a conservative material model. Independent of the used friction, all the simulations pre-
dict force–displacement curves that are lower than the experimental curve. This already
appears at the onset of the deformation, at 10 mm punch displacement. Furthermore, in the
experiment, the force reaches a constant level at a punch depth of 45 mm, but the simula-
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tions predict a maximum force at 50 mm for� D 0:12. A higher friction results in a shift
of the maximum to a higher depth. According to Figure 6.7, thefriction should be at least
0.16. A friction coefficient� D 0:14 is chosen because it is still close to the specification
of the lubrication manufacturer, and because the simulation show that a high friction co-
efficient is required. This friction coefficient is used for the remainder of the simulations,
despite the relatively poor description of the punch force.The following will show whether
a full strain path dependent material model will improve theperformance.

To assess the strain path changes that occur in the deep drawing of the cross die, the
strain path change indicator presented in Section 5.5 was used. The memory constant for
the indicator was set toc D 10:0. The comparison with the experiments with strain path
changes showed that a value for the strain path change indicator � < 0:4 indicates that the
traced strain path will show mechanical behaviour that cannot be predicted with a regular
isotropic/kinematic hardening model. In Figure 6.8 the value of� in the mid-plane of the
sheet is shown. In this picture it can be seen that two regionsin every 1/8 of the product
experience strain path changes. These two regions are more clearly indicated in Figure 6.6.
Region (1) appears at the draw-in. As the material is pulled towards the die cavity and flows
into it, the strain path changes. This is easily understood when the flow of the material is
considered. As the material is clamped between the die and the blankholder, but still far
away from the die cavity, it is pulled towards the die cavity.In this process, the material
experiences a tensile strain in the direction of the centre of the die cavity and a compressive
strain perpendicular to that. As the punch goes deeper, thismaterial enters the die cavity.
However, at the joint between the two arms of the cross, the material is drawn into the
cavity on both sides, while the tensile strain remains. Hence in the transverse direction, the
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Figure 6.7: Different friction coefficients in the simulation of the cross die.



6.2 Cross die 115

−1.000

−0.778

−0.556

−0.333

−0.111

0.111

0.333

0.556

0.778

1.000

r

2

r

1

Figure 6.8: The strain path change indicator in the cross dieat 55 mm punch displacement.

0.000

0.051

0.101

0.152

0.203

0.254

0.304

0.355

0.406

0.457

r

2

r

1

Figure 6.9: The equivalent plastic strain in the cross die at55 mm punch displacement.



116 Validation

0 0.1 0.2 0.3
−0.2

−0.1

0

0.1

0.2

−1

−0.5

0

0.5

1

equivalent plastic strain (-)

pl
as

tic
st

ra
in

(-
)

�
(-

)

"
p
x

"
p
y

"
p
z



p
xy

�

(a) Region (1).

0 0.02 0.04 0.06 0.08
−0.06

−0.03

0

0.03

0.06

−1

−0.5

0

0.5

1

equivalent plastic strain (-)

pl
as

tic
st

ra
in

(-
)

�
(-

)

"
p
x

"
p
y

"
p
z



p
xy

�

(b) Region (2).

Figure 6.10: The evolution of the plastic strain and the strain path change indicator.

material experiences reversed loading. In Figure 6.9 the distribution of equivalent plastic
strain is displayed. It shows that in region (1) where the strain path change occurs, the
equivalent plastic strain can reach a value of approximately 50 %. Figure 6.10(a) shows
the evolution of the individual strain components for a point in region (1) that has only a
limited amount of equivalent plastic strain. The strain path change occurs at"p

eq D 5 %,
where all the development of all the in-plane components arereversed, leading to negative
value for the strain path change indicator. The value of the strain path indicator shows a
minimum at� D �0:2, which can classified as an orthogonal strain path change.

The strain path change that is indicated at region (2) is not as obvious as the strain path
change in region (1). With increasing punch displacement, the material is pulled away from
under the die towards the flange. However, this effect is relatively small and the strains that
appear are also low. Figure 6.9 shows that the equivalent plastic strain is approximately
10 %. Hence, it may be that the strain path change effects may not appear, because only
little strain is accumulated. This is elaborated in Figure 6.10, where the strain components
and the strain path change indicator are displayed. The strain history parameters in region
(2) (Figure 6.10(b)) show a monotonic development until a strain of 5 % is reached. At
that level, only the shear component shows a true change. This causes the excitation of the
strain path change indicator to a value of� � 0:2. According to the definition of a strain
path change for DC06 in Chapter 5, a strain path dependent material model is required to
describe the mechanical behaviour in region (2).

From the investigation of the results of the strain path change indicator it seems that a
full strain path dependent material model is required. Thisis most convincingly indicated
by the strain path change indicator in region (1).

6.2.2 Simulations

In this section three simulations are discussed. The process parameters are equal in all the
simulations, but three different material models are used:Teodosiu & Hu, Levkovitch and
the isotropic/kinematic hardening model. The maximum punch displacement is 60 mm
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Table 6.1: The calculation times for the cross die. The simulations with marked (�) material
models were terminated.

model CPU time (h) stress update (s) no. of steps no. of iter.

isotropic 1.4 1.3 600 1
isotropic/kinematic 1.4 1.3 600 1
Levkovitch� 9.5 34 600 3
Teodosiu & Hu� 60.0 37 1688 4

and we aimed for a step size of 0.1 mm displacement per load step. Both the maximum
unbalance and the displacement criterion were used to determine convergence in the load
step. The relative unbalance force criterion was set to5 � 10�4 and the displacement ratio
criterion was2 � 10�3. The unbalance in the forces is set rather strictly, becauseit was
observed that this stabilises the calculation and reduces the noise in the force–displacement
curve.

The combined isotropic/kinematic hardening model performs better than the Levkovitch
and the Teodosiu & Hu models when the robustness of the material models is considered.
It was observed that the Teodosiu & Hu model is very sensitiveto the process parameters.
From the nodal unbalance distribution it was observed that region (1) causes problems for
the overall convergence of the process. Hence, for the first 20 mm the punch displacement
is processed smoothly without step size reduction, becausethe material is not drawn into
the die and no strain path changes occur. After that, the material entering the die cavity
experiences a strain path change. To accurately describe the mechanical behaviour in this
process, small load steps are required. Additionally, the complex system of equations that
are required for the stress update in the Teodosiu & Hu model require small load steps to
prevent divergence within the material model. The average step size decreases to a min-
imum of approximately 0.015 mm with this model. Experimentswith different process
settings showed that the Teodosiu & Hu model in particular isnot robust. The Levkovitch
model also requires smaller steps as the material in region (1) enters the die cavity. The
stress update of this material model is more robust under strain path changes and larger
load steps are used, compared to the simulation with the Teodosiu & Hu model. Still, step
size reduction is required for this material model, which reduces the average load step to
approximately 0.05 mm.

In Figure 6.11 the resulting force–displacement curves arepresented. The robustness
of the classical material models is reflected well in this graph. The isotropic and com-
bined isotropic/kinematic hardening models all finish the simulation until the end of the
punch displacement. Neither simulations shows any sign of necking. The simulation with
the Levkovitch hardening model reaches a punch displacement of 42 mm after which the
simulation terminates due to a singular matrix. The Teodosiu & Hu model here reaches a
maximum displacement of approximately 42.5 mm, after whichthe step size becomes too
small and the simulation was terminated.

From Figure 6.11 it is recognised that the material model hasa significant influence on
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the force-displacement curve. The results of the simulations with strain path dependent ma-
terial models (Teodosiu & Hu and Levkovitch) are relativelyclose together. Furthermore,
these models predict that the required force is drasticallyhigher than the prediction of simu-
lations with isotropic and combined isotropic/kinematic hardening models. The prominent
difference between the strain path dependent models and thecombined isotropic/kinematic
hardening models is the description of the mechanical behaviour in an orthogonal strain
path change. The Teodosiu & Hu and Levkovitch models predicta sharp increase in stress
whilst the combined isotropic/kinematic material model predicts a lower stress compared
to the proportional strain path, see Figure 5.8. In Section 6.2.1, the strain path change in-
dicator predicted that strain path effects are present in this process, and hence a full strain
path dependent material model is required. This is in agreement with the observations in
Figure 6.11. Still, all the material models predict a force–displacement curve that is lower
than the actual measurement.

Figure 6.12 shows the distribution of the equivalent plastic strain at 40 mm punch
displacement for the 3 different hardening models. This figure indicates that the mate-
rial models affects the distribution of strain. It shows that the simulation with the com-
bined isotropic/kinematic hardening predicts a strain distribution that is more localised
than the 2 strain path dependent material models. The simulation with the Teodosiu & Hu
model and the combined isotropic/kinematic hardening model show a similar distribution
of equivalent plastic strain. Only between the arms, along the line of symmetry of the
simulation, a local area with more equivalent plastic strain is predicted by the combined
isotropic/kinematic material model. This is also predicted by the simulation with the dis-
tortional hardening model. In contrast with the other two models, the distortional material
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Figure 6.11: Force–displacements curves from the experiment and simulations.



6.2 Cross die 119

0.000

0.056

0.111

0.167

0.222

0.278

0.333

0.389

0.444

0.500

(a) The combined isotropic/kinematic hardening model.

0.000

0.056

0.111

0.167

0.222

0.278

0.333

0.389

0.444

0.500

(b) The Levkovitch hardening model.

0.000

0.056

0.111

0.167

0.222

0.278

0.333

0.389

0.444

0.500

(c) The Teodosiu & Hu hardening model.

Figure 6.12: The distribution of equivalent plastic strainat 40.0 mm punch displacement.
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model also predicts more strain on the two corners on the armsof the cross. The simu-
lations with the distortional and Teodosiu & Hu models both have a more uniform spread
of the equivalent plastic strain, whereas the combined isotropic/kinematic model predicts
more localised strain. This can be explained by the materialflow into the die cavity. Mate-
rial that experiences an orthogonal strain path change whenentering the die cavity shows
a higher stress in the new loading direction. As a result, thesurrounding material is forced
to absorb more deformation since the stress level is not as high there.

The required CPU times in these simulations show a great difference, see Table 6.1. It
is noticed that these times were recorded for the experiments in Figure 6.11, until the sim-
ulation was finished or terminated. Clearly, the 2 simplest models are fast in the processing
of the cross die simulation. Both the Levkovitch and the Teodosiu & Hu models require
more calculation time for the complete simulation. The Levkovitch model requires this
time for the stress update, and for two extra iterations per load step. The Teodosiu & Hu
model requires only a little more time for the stress update than the Levkovitch model. The
large computation time for the simulation with the Teodosiu& Hu material model stems
from the large number of load steps that is required. The Teodosiu & Hu model requires a
smaller step size to preserve global convergence of the simulation.

The large difference in processing time between the simulation with the Teodosiu & Hu
and Levkovitch model may originate in the way in which the stress evolves during orthog-
onal hardening. In the Levkovitch model, upon a strain path change, the stress translates
across the yield surface to the new stress state. In this process, the yield surface changes
slightly due to distortional hardening and the hardening changes the size of the yield surface
mildly. Hence, to predict the overshoot in an orthogonal strain path change, there are no
large local gradients that can spoil the convergence. For the Teodosiu & Hu model, upon an
orthogonal strain path change, a large hardening rate is required to describe the overshoot
in the new loading direction. Large load steps will accordingly cause divergence at a global
level. Hence, if indeed a larger gradient is present in the orthogonal strain path changes, the
Teodosiu & Hu model will require smaller load steps to describe the deformation process.

6.3 Conclusion

In this chapter 2 experiments are used to validate the material models; the experiments
with tension under cyclic shear, and the deep drawing of the cross die. The tension un-
der cyclic shear experiment was difficult to evaluate because the input for the validation
is an actual strain measurement, that causes considerable noise at the output. For the ma-
terial that is most sensitive to strain path changes, it was found that the Teodosiu & Hu
model represents the trends in the stress evolution best. The Levkovitch and the combined
isotropic/kinematic hardening models actually predict opposing stress evolutions.

The deep drawing of the cross die is a representative of a trueforming process. The
strain path change indicator was used to judge the sensitivity of this process to strain path
effects in the material. It was found that this process indeed shows strain path changes
that need to be taken into account. The material models are compared on the basis of their
predictions of the force–displacement curve. The Levkovitch model gives the best predic-
tion, but the difference with the prediction of the simulation with the Teodosiu & Hu model
is small. The simulations with the isotropic and combined isotropic/kinematic hardening
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models differ considerably from the experimental results.However, the robustness of the
strain path dependent models is not satisfactory. Both strain path sensitive models could not
finish the simulation completely. This may be due to the settings of the overall simulation,
but this does not motivate the use of these models. The required processing times are ex-
ceptionally large for the Teodosiu & Hu model, as it is approximately 60 times larger than
the simulation with a classical hardening model. The processing time for the Levkovitch
model is 6 times as large as the calculation with the classical hardening model. Based on
the calculation time and the accuracy in the prediction of the force–displacement curve, the
Levkovitch model provides the best solution for simulations of processes with strain path
changes.





7. Conclusion

In this thesis the mechanical behaviour of sheet metal subjected to non-proportional strain
paths was studied. The research was divided into three different parts; the TWENTE BIAX-
IAL TESTER and the validation of its results; the experiments to determine the mechanical
behaviour of the material; and the material models and theirvalidation. In this chapter, con-
clusions from the research are drawn and recommendations are given for further research.

Twente biaxial tester

The unique biaxial test equipment is crucial in this research, because the investigation on
the mechanical behaviour of sheet metal is carried out solely with this equipment. The
functionality of the test equipment was assessed on two points; the accuracy of the mea-
surement and the control of the deformation in the sample.

To judge the accuracy of the stress–strain measurements, two issues were considered:
the accuracy of the determination of the stress and strain, and the homogeneity of the defor-
mation area. The strains were calculated with a least squares fit, based on the displacement
of dots in the deformation area. It was found that the accuracy of the measured strain
was better than 0.05 %. To assess the homogeneity of the strain across the deformation
area, digital image correlation software was used to measure the complete strain field in
the deformation area. Used in the simple shear test, it showed a homogeneous distribution
of strain across the deformation area of the sample. The complete simple shear domain
(
 � 50 %) of the TWENTE BIAXIAL TESTER can be used to acquire a homogeneous de-
formation of the sample. In plane strain tension, the tensile strain becomes inhomogeneous
after approximately 15% strain. At higher strains, the sample slips away from between the
clamps, as a result of the accumulated thickness reduction of the sample. The observed
slip depends on the local thickness of the material and the position of the bolts that secure
the sample. Eventually this leads to an inhomogeneous deformation. The measured dis-
placements in the plane strain tensile test and the simple shear test were used as boundary
conditions for FE simulations. It was demonstrated that thetrue stress can be calculated
by using the measured force and the initial geometry. Compensation factors for boundary
effects are not necessary.

The deformation of the sample was applied by prescribing displacements to the ac-
tuators. Because of the relative flexibility of the test rig,the actuator position does not
accurately control the position of the clamps holding the sample. Especially in experi-
ments with continuous strain path changes, the measured strain path deviates significantly
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from the intended strain path. In this research, force-feedback was successfully applied to
control the strain path.

Material Behaviour

In this work four different materials are examined. All the materials showed to some extent
strain path sensitive behaviour. AA5182 and DP600 both showthe Bauschinger effect and
transient hardening after a load reversal. Additionally, work hardening stagnation appeared
after the load reversal. In the experiments with orthogonalstrain path changes, neither
materials showed the cross-hardening effect.

H340LAD was moderately sensitive to strain path changes. The experiments with load
reversals demonstrated that the work hardening stagnationactually turns to softening of the
material. A small overshoot was observed in the experiment with the orthogonal strain path
change.

DC06 was most sensitive to strain path changes. Especially in the experiment with
an orthogonal strain path change, the overshoot in stress inthe new loading direction was
significant. After the peak, the stress dropped again and converged back to the monotonic
hardening curve. The experiments with continuous orthogonal strain path changes showed
that, if the strain path change is sufficiently “sharp”, the same overshoot in stress is ob-
served as in the experiment with intermediate unloading. A more gradual transition of the
deformation direction shows a gradual approach towards themonotonic hardening curve.
In the paper by Wanget al. (2008), it was argued that the mechanical behaviour in an or-
thogonal strain path change is not affected by intermediateelastic unloading, which indeed
is proven by the experimental results presented in the current research.

Models

A generic return mapping algorithm in matrix-vector formatwas described and imple-
mented in the FE-software DIEKA. This model allows for flexibility in using different
hardening laws and different yield loci. The model is prepared for the full 3D representa-
tion and the plane stress situation.

The Teodosiu & Hu model describes a complex algorithm with 7 evolution equations
for the stress update. The material model requires 13 material parameters that need to be
determined from experiments with monotonic, cyclic and orthogonal strain paths. The de-
scription of the Bauschinger effect, the transient hardening and the work hardening stagna-
tion in a load reversal are accurately described by this model. Continuous orthogonal strain
path changes are also predicted well. However, a fit to the experiment with an orthogonal
strain path change with intermediate unloading could not befound. The model describes
the overshoot in terms of a high hardening rate, whereas in the experiment it seems that the
overshoot is the result of a higher flow stress in the new direction. The model proposed by
Levkovitch is a more phenomenological material model and combines isotropic, kinematic
and distortional hardening models to describe different strain path effects. Distortional
hardening is used to describe the effect of an orthogonal strain path change and kinematic
hardening describes the mechanical behaviour in reversed loading. These two models are
decoupled, which makes the fitting procedure relatively easy. The orthogonal strain path
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change is captured well, but the simple kinematic hardeningmodel cannot describe the
work hardening stagnation and transient hardening effect which are observed in a test with
reversed loading. More accurate predictions of the cyclic behaviour should be obtained
when using a more advanced kinematic description like Huétink et al.(1995); Yoshida and
Uemori (2003).

The validation of the material models was done with DC06 on a semi-academical deep
drawing process. The presented strain path change indicator showed that, based on a sim-
ulation with isotropic hardening, the effects of strain path changes have to be incorporated
in the simulation. Indeed, the simulations with the full strain path dependent models give
more accurate predictions. The material models were assessed based on their prediction
of the force–displacement curve. The Levkovitch model gives a slightly better predic-
tion of the force–displacement curve than the Teodosiu & Hu model, but both are close
to the experimental results. The isotropic and combined isotropic/kinematic hardening
model under-estimate the required punch force. For accurate modelling of true forming
processes, the full strain path dependent models give more accurate results. However, the
required calculation times for the strain path dependent models are a large disadvantage.
The Levkovitch model requires approximately 6 times more CPU time, whereas the Teo-
dosiu & Hu model requires approximately 60 times more computing time. Because of the
simplicity of the model, the flexibility in the different models, and the faster evaluation, it
is recommended to continue the development of material models based on the Levkovitch
model.





A. Material parameters

In this appendix the parameters for the different materialsand material models are pre-
sented. The fitting procedure as described in Chapter 5 is used to determine the parameters.
TheR-values are obtained from Corus.

Table A.1: TheR-values for DC06.

parameter DC06 AA5182 H340LAD DP600

R0 1.85 0.6661 0.9093 0.9490
R45 2.06 0.7114 1.0287 0.8404
R90 2.51 0.6011 1.1898 1.1658

Table A.2: The Vegter parameters for DC06.

0ı 45ı 90ı

fsh 0:572 0:542 0:500

fun 1:000 0:995 0:993

fps 1:243 1:248 1:246

R-value 1:85 2:06 2:51

fbi 1:153

fbi 1:153

˛ 0:5 0:5 0:5

�bi 0:77
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Table A.3: Material parameters for the Swift model.

parameter DC06 AA5182 H340LAD DP600

�0 (MPa) 70.0 0.0 134.73 131.9
C (MPa) 510.1 562.5 582.8 820.5
"0 (-) 1:0 � 10�7 0.010874 0.0260 1:07 � 10�4

n (-) 0.3826 0.3250 0.2903 0.2087

Table A.4: Material parameters for the combined Swift Armstrong–Frederick model.

parameter DC06 AA5182 H340LAD DP600

�0 (MPa) 95.0 0.0 0.0 0.0
C (MPa) 300.0 451.8 492.7 732.8
"0 (-) 1:0 � 10�9 2:72 � 10�3 0.322 6:8 � 10�6

n (-) 0.340 0.2270 0.2284 0.0995
Hl (-) 12.25 4 � 104 11.4 100
Hk (-) 766.0 0.1 1240 499

Table A.5: Levkovitch material parameters.

parameter DC06 AA5182 H340LAD DP600

�0 (MPa) 70.0 0.0 0.0 0.0
C (MPa) 349.0 370.0 700.0 592.07
"0 (-) 5:0 � 10�5 3:3 � 10�5 5:0 � 10�9 1:3 � 10�6

n (-) 0.2969 0.1821 0.1323 0.135
C˛ (-) 15.0 57.23 36.53 13.20
˛s (-) 40.0 23.48 82.52 14.99
CD (-) 15.0 4.30 4.00 4.79
H s

D (-) 0.0 0.0 0.0 0.0
CL (-) 11.0 0.54 1.06 1.80
H s

L (-) 0.65 0.82 0.70 0.85
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Table A.6: The Teodosiu material parameters.

parameter DC06 AA5182 H340LAD DP600

�0 (MPa) 125.0 90.0 150.0 296.0
˛0 (MPa) 0.5 50.0 110.0 80.0
Ss (MPa) 238.8 101.1 213.6 250.0
Rs (-) 65.0 100.0 49.1 114.27
Cp (-) 1.2 24.7 10.0 7.19
Cl (-) 50.0 10.5 50.0 40.4
Cs (-) 5.42 3.30 13.42 10.07
C˛ (-) 164.7 235.3 192.5 68.9
Cr (-) 44.4 16.5 140.0 94.8
np (-) 350.0 16.6 35.0 2.0
nl (-) 0.85 1.25 0.50 0.75
m (-) 0.47 0.36 0.55 0.55
r (-) 2.85 2.00 3.0 2.99
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J. Périaux and D. Knörzer (eds.),European Congress on Computational Methods in
Applied Sciences and Engineering, pp. 1–14, Finland.

Banabic, D., T. Kuwabara, T. Balan and D. S. Comsa (2004), An anisotropic yield criterion
for sheet metals,Journal of Materials Processing Technology, vol. 157-158, pp. 462–
465.

Batoz, J. L. and P. Lardeur (1989), A discrete shear triangular nine d.o.f. element for the
analysis of thick to very thin plates,International Journal for Numerical Methods in
Engineering, vol. 28, pp. 533–560.

Belytschko, T., W. K. Liu and B. Moran (2006),Nonlinear finite elements for continua and
structures, Wiley, Chichester.

Chaboche (1991), On some modifications of kinematic hardening to improve the descrip-
tion of ratchetting effects.,International Journal of Plasticity, vol. 7, pp. 661–678.

Chen, W.-F. (1994),Constitutive Equations for Engineering Materials, Volume2: Plastic-
ity and Modeling, Elsevier.

Christodoulou, N., O. T. Woo and S. R. MacEwen (1986), Effectof stress reversals on the
work hardening behaviour of polycrystalline copper,Acta Materialia, vol. 34, pp. 1553–
1562.

Chun, B. K., H. Y. Kim and J. K. Lee (2002), Modelling the Bauschinger effect for sheet
metals, part I: theory,International Journal of Plasticity, vol. 18, pp. 571–595.

De Borst, R. and P. H. Feenstra (1990), Studies in anisotropic plasticity with reference to
the hill criterion,International Journal for Numerical Methods in Engineering, vol. 29,
pp. 315–336.

De Montleau, P. (2004), Programming of the teodosiu’s hardening model, progress report.
Fernandes, J. V., J. J. Gracio, J. H. Schmitt and E. F. Rauch (1993), Development and

persistence of microbands in copper deformed under complexstrain paths,Scripta Met-
allurgica et Materialia, vol. 28, pp. 1335–1340.

Gardey, B., S. Bouvier, V. Richard and B. Bacroix (2005), Texture and dislocation struc-



132 Bibliography

tures observation in a dual-phase steel under strain-path changes at large deformation,
Materials Science and Engineering A, vol. 400-401, pp. 136–141.

Goerdeler, M. and G. Gottstein (2001), A microstructural work hardening model based
on three internal state variables,Materials Science and Engineering A, vol. 309-110,
pp. 377–381.

Haddadi, H., S. Bouvier, M. Banu, C. Maier and C. Teodosiu (2006), Towards an accurate
description of the anisotropic behaviour of sheet metals under large plastic deformations:
Modelling, numerical analysis and identification.,International Journal of Plasticity,
vol. 22, pp. 2226–2271.

Hasegawa, T. and T. Yakou (1975), Deformation behaviour anddislocation structures upon
stress reversal in polycrystalline aluminium,Materials Science and Engineering, vol. 20,
pp. 267–276.

Huétink, J. (1991), Extension of anisotropic hardening elastic-plastic theory to finite strains
based on visco-elastic finite strain theory, in: D. Besdo andE. Stein (eds.),Finite In-
elastic Deformations – Theory and Applications, pp. 197–205, Springer-Verlag, Berlin,
Germany.

Huétink, J., A. H. Streppel and P. T. Vreede (1995), Development and experimental verifi-
cation of constitutive equations for anisotropic sheet metal, in: D. R. J. Owen, E. Oñate
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